[1]GONZALEZ-SANTANDER J L, FERNANDEZ R, MARTIN G, et al. A Useful Analytical Formula to Avoid Thermal Damage in the Adaptive Control of Dry Surface Grinding[J]. International Journal of Mechanical Sciences, 2016, 117:152-161.
[2]李晓强, 戴士杰, 张慧博. 基于环形非均匀热源的磨削温度场建模与实验研究[J]. 表面技术, 2020, 49(5):1-11.
LI Xiaoqiang, DAI Shijie, ZHANG Huibo. Modeling and Experimental Study on Grinding Temperature Field Based on Annular Non-uniform Heat Source[J]. Surface Technology, 2020, 49(5):1-11.
[3]HAHN R S. On the Nature of the Grinding Process[C]∥Proceedings of the 3rd Machine Tool Design and Research Conference, Advances in Machine Tool Design and Research. London, 1962:129-154.
[4]ROWE W B. Temperature Case Studies in Grinding Including an Inclined Heat Source Model[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2001, 215(4):473-91.
[5]ROWE W B, JIN T. Temperatures in High Efficiency Deep Grinding(HEDG)[J]. CIRP Annals—Manufacturing Technology, 2001, 50(1):205-208.
[6]ROWE W B. Thermal Analysis of High Efficiency Deep Grinding[J]. International Journal of Machine Tools and Manufacture, 2001,41(1):1-19.
[7]JIN T, CAI G Q. Analytical Thermal Models of Oblique Moving Heat Source for Deep Grinding and Cutting[J]. Journal of Manufacturing Science and Engineering, 2001,123(2):185-190.
[8]DESRUISSEAUX N R, ZERKLE R D. Temperature in Semi-infinite and Cylindrical Bodies Subjected to Moving Heat Sources and Surface Cooling[J]. Journal of Heat Transfer, 1970,92(3):456-464.
[9]LAVINE A S, JEN T C. Thermal Aspects of Grinding:Heat Transfer to Workpiece, Wheel, and Fluid[J]. Journal of Heat Transfer, 1991, 113(2):296-303.
[10]ROWE W B. Principles of Modern Grinding Technology[M].New York:William Andrew Publishing, 2009.
[11]MALKIN S, COOK N H. The Wear of Grinding Wheels:Part 2-Fracture Wear[J]. Journal of Industrial Engineering International, 1971, 93(4):1129-1133.
[12]WANG Y Z, CHU X M, HUANG Y Z, et al. Surface Residual Stress Distribution for Face Gear under Grinding with a Long-radius Disk Wheel[J]. International Journal of Mechanical Sciences, 2019, 159(1):260-266.
[13]李湾, 李学坤, 明瑞, 等. 面齿轮磨削力建模与工艺影响分析[J]. 机械与电子, 2021, 39(7):3-9.
LI Wan, LI Xuekun, MING Rui, et al. Modeling and Processing Analysis of Grinding Force of Face Gear[J]. Machinery and Electronics, 2021, 39(7):3-9.
[14]GUO H, WANG X Y, ZHAO N, et al. Simulation Analysis and Experiment of Instantaneous Temperature Field for Grinding Face Gear with a Grinding Worm[J]. International Journal of Advanced Manufacturing Technology, 2022, 120(7):4989-5001.
[15]JERMOLAJEV S, BRINKSMEIER E, HEINZEL C. Surface Layer Modification Charts for Gear Grinding[J]. CIRP Annals, 2018, 67:333-336.
[16]JIN T, YI J, LI P. Temperature Distributions in Form Grinding of Involute Gears[J]. International Journal of Advanced Manufacturing Technology, 2017, 88:2609-2620.
[17]易军, 龚志锋, 易涛,等. 齿根过渡圆弧对全齿槽成形磨削温度和残余应力影响的研究[J]. 中国机械工程, 2022, 33(11):1278-1286.
YI Jun, GONG Zhifeng, YI Tao, et al. Study on the Influence of Tooth Root Transition Arc on the Temperature and Residual Stress of Full Tooth Slot Forming Grinding[J]. China Mechanical Engineering, 2022, 33(11):1278-1286.
[18]MA X F, CAI Z Q, YAO B, et al. Dynamic Grinding Force Model for Face Gear Based on the Wheel-gear Contact Geometry[J]. Journal of Materials Processing Technology, 2022, 306:117633.
[19]LI C, LI X L, WU Y Q, et al. Deformation Mechanism and Force Modelling of the Grinding of YAG Single Crystals[J], International Journal of Machine Tools and Manufacture, 2019, 143:23-37.
[20]HOU Z B, KOMANDURI R. On the Mechanics of the Grinding Process—Part I. Stochastic Nature of the Grinding Process[J]. International Journal of Machine Tools and Manufacture, 2003, 43(15):1579-1593.
[21]GHOSH S, CHATTOPADHYAY A, PAUL S. Modelling of Specific Energy Requirement during High-efficiency Deep Grinding[J]. International Journal of Machine Tools and Manufacture, 2008, 48(11):1242-1253.
[22]SINGH V, RAO P V, GHOSH S. Development of Specific Grinding Energy Model[J]. International Journal of Machine Tools and Manufacture, 2012, 60:1-13.
[23]TANG J Y, DU J, CHEN Y. Modeling and Experimental Study of Grinding Forces in Surface Grinding[J]. Journal of Materials Processing Technology, 2009, 209(6):2847-2854.
[24]谢桂芝, 尚振涛, 盛晓敏, 等. 工程陶瓷高速深磨磨削力模型的研究[J]. 机械工程学报, 2011, 47(11):169-176.
XIE Guizhi, SHANG Zhentao, SHENG Xiaoming, et al. Grinding Force Modeling for High-speed Deep Grinding of Engineering Ceramics[J]. Chinese Journal of Mechanical Engineering, 2011, 47(11):169-176.
[25]CAI S J, YAO B, ZHENG Q, et al. Dynamic Grinding Force Model for Carbide Insert Peripheral Grinding Based on Grain Element Method[J]. Journal of Manufacturing Processes, 2020, 58:1200-1210.
[26]WEN Shizhu, HUANG Ping. Principles of Tribology[M]. Singapore:John Wiley & Sons, 2012:225-251.
[27]POPOV V L. Contact Mechanics and Friction[M]. Berlin:Springer, 2010:301-303.
[28]POPOV V L, HEBE M. Method of Dimensionality Reduction in Contact Mechanics and Friction[M]. Berlin:Springer, 2015:115-130.
[29]MARINESCU I D, HITCHINER M P, UHLMANN E, et al. Handbook of Machining with Grinding Wheels[M].Boca Raton:CRC Press, 2006.
[30]JAEGER J G. Moving Sources of Heat and the Temperature of Sliding Contacts[J]. Journal and Procedings—Royal Society of New South Wales, 1942, 76:203-224.
[31]郭辉, 赵宁, 张淑艳. 基于碟形砂轮磨齿的面齿轮包络残差研究[J]. 航空动力学报, 2014, 29(11):2743-2750.
GUO Hui, ZHAO Ning, ZHANG Shuyan. Envelope Residuals Research of Face Gear Based on Disc Grinding Wheel Tooth Grinding[J]. Journal of Aerospace Power, 2014, 29(11):2743-2750.
|