China Mechanical Engineering ›› 2021, Vol. 32 ›› Issue (06): 705-713.DOI: 10.3969/j.issn.1004-132X.2021.06.010

Previous Articles     Next Articles

Charging Path Planning Strategy of Electric Vehicles with Integrating Dynamic Energy Consumption and Network Information

LIN Xinyou1,2;ZHOU Binhao1;XIA Yutian1   

  1. 1. College of Mechanical Engineering & Automation, Fuzhou University, Fuzhou, 350108
    2. Key Laboratory of Fluid Power and Intelligent Electro-Hydraulic Control (Fuzhou University), Fujian Province University, Fuzhou, 350108
  • Online:2021-03-25 Published:2021-04-01

融合动态能耗与路网信息的电动汽车充电路径规划策略

林歆悠1,2;周斌豪1;夏玉田1   

  1. 1. 福州大学机械工程及自动化学院,福州,350108
    2. 流体动力与电液智能控制福建省高等学校重点实验室(福州大学),福州,350108
  • 作者简介:林歆悠,男, 1981年生,副教授。研究方向为新能源汽车电驱动理论与能量管理控制、电动汽车复合传动动态协调控制、网联智能汽车仿人化车路协同控制与多信息融合路径规划。发表论文50余篇。 E-mail: linxinyoou@fzu.edu.cn。
  • 基金资助:
    福建省自然科学基金(2020J01449);
    国家自然科学基金(51505086);
    汽车零部件先进制造技术教育部重点实验室开放课题基金(2019KLMT06);
    晋江市福州大学科教园区发展中心科研项目(2019-JJFDKY-10)

Abstract: Aiming at the range anxiety problems of electric vehicles, taking the electric vehicles as the research objects, based on the “vehicle-road-network” intelligent system, the road topology model, impedance evaluation model and vehicle energy consumption model were established, the optimal driving time, optimal energy consumption and comprehensive optimization were as the objectives respectively, and the A* algorithm was used to plan the charging path of electric vehicles. Taking Fuzhou urban cycle as an example, the main driving cycle data was collected, the planned road sections were matched with the driving cycle data to predict the vehicle driving time and energy consumption, and the impedance cost of each objective was calculated by combining the waiting time for charging. The results show that the proposed charging path planning strategy may respectively plan the optimal charging path considering time, energy consumption and comprehensive optimization according to the needs of drivers.

Key words: electric vehicle, charging path planning, energy consumption prediction, impedance cost

摘要: 针对电动汽车续驶里程短的问题,以电动汽车为研究对象,基于“车路网”智能系统建立了道路拓扑模型、阻抗评价模型以及整车能耗模型,分别以电动汽车行驶时间最优、能耗最优和综合最优为目标,运用A*算法对电动汽车进行了充电路径规划。以福州市区交通为实例,采集了各路段主要行驶工况数据,将规划路段与行驶工况数据匹配用于车辆行驶时间和能耗的预测,并结合充电等待时间计算各目标阻抗成本。研究结果表明:所提出的充电路径规划策略能够根据驾驶员的不同需求分别规划出考虑时间、能耗以及综合最优的充电路径。

关键词: 电动汽车, 充电路径规划, 能耗预测, 阻抗成本

CLC Number: