China Mechanical Engineering

Previous Articles     Next Articles

Friction and Wear Properties of FeS/Cu Composite Materials Fabricated by Mechanical Alloying

LI Rongrong;YIN Yanguo;ZHANG Kaiyuan;ZENG Qingqin;CHEN Qi   

  1. School of Mechanical Engineering, Hefei University of Technology, Hefei, 230009
  • Online:2020-09-10 Published:2020-09-30

机械合金化FeS/Cu复合材料的摩擦磨损性能

李蓉蓉;尹延国;张开源;曾庆勤 ;陈奇   

  1. 合肥工业大学机械工程学院,合肥,230009
  • 基金资助:
    国家自然科学基金资助项目(51575151,51775158)

Abstract: FeS/Cu composite materials were prepared by mechanical alloying and powder metallurgy with FeS and CuSn8Ni1 powders as raw materials. The tribological properties and lubrication  film and transfer film characteristics of FeS/Cu composite materials prepared under different loads were systematically discussed. The results show that the mechanical alloying may improve the interfacial properties of FeS and copper alloy matrix, and thus reduce wear resistance. When the loads are relatively small, the surface contacts of friction pair are unstable, the composite transfer films are incomplete, and the friction coefficients fluctuate greatly. When the loads are larger, the composite transfer films ares easy to be damaged, and the wear resistance of the materials becomes worse. When the load is 150 N, the load is appropriate. The material surfaces are softened, making the composite transfer films more complete and the friction coefficient smaller.

Key words: mechanical alloying, copper alloy, FeS, friction and wear

摘要: 以FeS和CuSn8Ni1粉末为原料,利用机械合金化技术和粉末冶金技术制备了FeS/Cu复合材料,探讨了不同载荷情况下所制备的FeS/Cu复合材料的摩擦学性能及润滑膜与转移膜特征。结果表明:机械合金化提高了FeS与铜合金基体界面结合性能,进而提高了材料减摩耐磨性能;当载荷较小时,摩擦副表面接触不稳定,复合转移膜不连续,摩擦因数波动大;载荷较大时,复合转移膜易破损,材料的减摩耐磨性能变差;当载荷为150 N时,载荷适宜,材料表面软化,复合转移膜更加完整,摩擦因数较小。

关键词: 机械合金化, 铜合金, 硫化亚铁, 摩擦磨损

CLC Number: