中国机械工程 ›› 2024, Vol. 35 ›› Issue (05): 851-859.DOI: 10.3969/j.issn.1004-132X.2024.05.010

• 寿命预测与损伤评估 • 上一篇    下一篇

基于健康因子和混合Bi-LSTM-NAR模型的锂离子电池剩余寿命预测

夏然;苏春   

  1. 东南大学机械工程学院,南京,211189

  • 出版日期:2024-05-25 发布日期:2024-06-26
  • 作者简介:夏然,女,1999年生,硕士研究生。研究方向为锂离子电池、剩余寿命预测。E-mail:1820023726@qq.com。
  • 基金资助:
    国家自然科学基金(71671035);机械设备健康维护湖南省重点实验室开放基金(201901)

Remaining Useful Life Prediction for Lithium-ion Batteries Based on Health Indicators and Hybrid Bi-LSTM-NAR Model

XIA Ran;SU Chun   

  1. School of Mechanical Engineering,Southeast University,Nanjing,211189

  • Online:2024-05-25 Published:2024-06-26

摘要: 为准确预测锂离子电池剩余寿命、降低电池工作风险,提出一种新的锂离子电池剩余寿命在线预测模型。基于锂离子电池历史运行数据提取6种健康因子,用于表征电池的退化状态;采用随机森林(RF)算法完成健康因子的评价与筛选;利用经遗传算法优化的广义回归神经网络(GA-GRNN)完成锂离子电池剩余容量的估计。在此基础上,应用结合双向长短期记忆(Bi-LSTM)网络模型和非线性自回归(NAR)神经网络的混合模型(混合Bi-LSTM-NAR模型)预测锂电池剩余寿命。以NASA公开数据集为例完成案例研究,结果表明:通过因子筛选,可以为锂离子电池容量估计及剩余寿命预测的精度提供保障;与已有方法的预测结果相比,所提混合预测模型的预测精度显著提高。

关键词: 锂离子电池, 健康因子, 神经网络, 剩余寿命预测

Abstract: In order to accurately predict the remaining useful life of lithium-ion batteries and reduce the risk of battery operations, a novel model was proposed for online remaining useful life prediction of lithium-ion batteries. On the basis of historical operation data of lithium-ion batteries, six types of health indicators were extracted to characterize the degradation of batteries. The random forest(RF) algorithm was adopted to evaluate and screen the health indicators. The generalized regression neural network(GA-GRNN), which was optimized by genetic algorithm, was used to estimate the residual capacity of the battery. Then, a hybrid model combining bidirectional long short-term memory(Bi-LSTM)network model and nonlinear autoregressive(NAR) neural network(hybrid Bi-LSTM-NAR model)was used to predict the remaining useful life for lithium-ion batteries. A case study was conducted with the NASA open data. The results show that by way of screening the indicators, the accuracy of capacity estimation and remaining useful life prediction of lithium-ion batteries are ensured. Compared with the prediction results of existing methods, the prediction accuracy of the proposed hybrid prediction model is improved effectively.

Key words: lithium-ion battery, health indicator, neural network, remaining useful life predition

中图分类号: