[1]SCHMUCH R, WAGNER R, HRPEL G, et al. Performance and Cost of Materials for Lithium-based Rechargeable Automotive Batteries[J]. Nature Energy, 2018, 3(4):267-278.
[2]郑悦, 谢长君, 黄亮,等. 锂电池与超级电容混合电动汽车系统在环综合测试[J]. 中国机械工程, 2016, 27(6):821-826.
ZHENG Yue, XIE Changjun, HUANG Liang, et al. Powertrain in Loop Test System of Hybrid Electric Vehicles Combined Lithium Battery and Super Capacitor[J]. China Mechanical Engineering, 2016, 27(6):821-826.
[3]HU Xiaosong, XU Le, LIN Xianke, et al. Battery Lifetime Prognostics[J]. Joule, 2020, 4(2):310-346.
[4]SHARMA P, BORA B J. A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-ion Batteries[J]. Batteries, 2022, 9(1):13.
[5]刘月峰, 赵光权, 彭喜元. 多核相关向量机优化模型的锂电池剩余寿命预测方法[J]. 电子学报, 2019, 47(6):1285-1292.
LIU Yuefeng, ZHAO Guangquan, PENG Xiyuan. A Lithium-ion Battery Remaining Using Life Prediction Method Based on Multi-kernel Relevance Vector Machine Optimized Model[J]. Acta Electronica Sinica, 2019, 47(6):1285-1292.
[6]LIU Yiwei, SUN Jing, SHANG Yunlong, et al. A Novel Remaining Useful Life Prediction Method for Lithium-ion Battery Based on Long Short-term Memory Network Optimized by Improved Sparrow Search Algorithm[J]. Journal of Energy Storage, 2023, 61:106645.
[7]ALI J B, SAIDI L. A New Suitable Feature Selection and Regression Procedure for Lithium-ion Battery Prognostics[J]. International Journal of Computer Applications in Technology, 2018, 58(2):102-115.
[8]KHALEGHI S, HOSEN M S, KARIMI D, et al. Developing an Online Data-driven Approach for Prognostics and Health Management of Lithium-ion Batteries[J]. Applied Energy, 2022, 308:118348.
[9]WEI Meng, YE Min, WANG Qiao, et al. Remaining Useful Life Prediction of Lithium-ion Batteries Based on Stacked Autoencoder and Gaussian Mixture Regression[J]. Journal of Energy Storage, 2022, 47:103558.
[10]BAI Junqi, HUANG Jiayin, LUO Kai, et al. A Feature Reuse Based Multi-model Fusion Method for State of Health Estimation of Lithium-ion Batteries[J]. Journal of Energy Storage, 2023, 70:107965.
[11]JI Yufan, CHEN Zewang, SHEN Yong, et al. An RUL Prediction Approach for Lithium-ion Battery Based on SADE-MESN[J]. Applied Soft Computing, 2021, 104:107195.
[12]WILLIARD N, HE W, OSTERMAN M, et al. Comparative Analysis of Features for Determining State of Health in Lithium-ion Batteries[J]. International Journal of Prognostics and Health Management, 2013, 4(1):1-7.
[13]SU Chun, CHEN Hongjing, WEN Zejun. Prediction of Remaining Useful Life for Lithium-ion Battery with Multiple Health Indicators[J]. Maintenance and Reliability, 2021, 23(1):176-183.
[14]JIA Shun, MA Bo, GUO Wei, et al. A Sample Entropy Based Prognostics Method for Lithium-ion Batteries using Relevance Vector Machine[J]. Journal of Manufacturing Systems, 2021, 61:773-781.
[15]汪千程, 苏春, 文泽军. 基于协整分析的风力机多工况监测与故障诊断[J]. 中国机械工程, 2022, 33(13):1596-1603.
WANG Qiancheng, SU Chun, WEN Zejun. Multi-condition Monitoring and Fault Diagnosis of Wind Turbines Based on Cointegration Analysis[J]. China Mechanical Engineering, 2022, 33(13):1596-1603.
[16]WANG Hairui, LI Dongwen, LI Dongjun, et al. Remaining Useful Life Prediction of Aircraft Turbofan Engine Based on Random Forest Feature Selection and Multi-layer Perceptron[J]. Applied Sciences, 2023, 13(12):7186.
[17]EWEES A A, AL-QANESS M A A, ABUALIGAH L, et al. Boosting Arithmetic Optimization Algorithm with Genetic Algorithm Operators for Feature Selection:Case Study on Cox Proportional Hazards Model[J]. Mathematics, 2021, 9(18):2321.
[18]NIKBAKHT S, ANITESCU C, RABCZUK T. Optimizing the Neural Network Hyperparameters Utilizing Genetic Algorithm[J]. Journal of Zhejiang University—Science A, 2021, 22(6):407-426.
[19]LI Shuangqi, ZHAO Pengfei. Big Data Driven Vehicle Battery Management Method:a Novel Cyber-Physical System Perspective[J]. Journal of Energy Storage, 2021, 33:102064.
[20]LUO Jiahang, ZHANG Xu. Convolutional Neural Network Based on Attention Mechanism and Bi-LSTM for Bearing Remaining Life Prediction[J]. Applied Intelligence, 2022, 52(1):1076-1091.
[21]SUN Hanlei, SUN Jianrui, ZHAO Kun, et al. Data-driven ICA-Bi-LSTM-combined Lithium Battery SOH Estimation[J]. Mathematical Problems in Engineering, 2022, 2022:9645892.
[22]吕大青,杨欢红,杜浩良,等. 基于小波KPCA与Bi-LSTM的特高压换流站测控装置健康评估和预测[J]. 电力系统保护与控制, 2022, 50(19):80-87.
LYU Daqing, YANG Huanhong, DU Haoliang, et al. Health Status Assessment and Prediction of Operational Condition of a Measurement and Control Device in a UHV Converter Station Based on KPCA and Bi-LSTM[J]. Power System Protection and Control, 2022, 50(19):80-87.
[23]QU Jiantao, LIU Feng, MA Yuxiang, et al. A Neural-network-based Method for RUL Prediction and SOH Monitoring of Lithium-ion Battery[J]. IEEE Access, 2019, 7:87178-87191.
[24]LI Penghua, ZHANG Zijian, XIONG Qiongyu, et al. State-of-health Estimation and Remaining Useful Life Prediction for the Lithium-ion Battery Based on a Variant Long Short Term Memory Neural Network[J]. Journal of Power Sources, 2020, 459:228069.
|