[1]LAERMER F, URBAN A. MEMS at Bosch-Si Plasma Etch Success Story, History, Applications, and Products[J]. Plasma Processes and Polymers, 2019, 16(9):1800207.
[2]ZHU J, LIU X, SHI Q, et al. Development Trends and Perspectives of Future Sensors and MEMS/NEMS[J]. Micromachines, 2019, 11(1):7.
[3]李玲聪, 张伟, 张学松. 新型车载MEMS加速度计的设计及性能优化[J]. 传感器与微系统, 2020, 39(5):14-16.
LI Lingcong, ZHANG Wei, ZHANG Xuesong. Design and Performance Optimization of New Vehicle MEMS Accelerometer[J]. Transducer and Microsystem Technologies, 2020, 39(5):14-16.
[4]ALGAMILI A S, KHIR M H M, DENNIS J O, et al. A Review of Actuation and Sensing Mechanisms in MEMS-based Sensor Devices[J]. Nanoscale Research Letters, 2021, 16:1-21.
[5]李杜娟, 陈慧旖, 刘超然, 等. 基于微纳加工技术的生物传感器研究进展[J]. 电子学报, 2021, 49(6):1228-1236.
LI Dujuan, CHEN Huiyi, LIU Chaoran, et al. Research Progress of Biosensors Based on Microfabrication Technology[J]. Acta Electronica Sinica, 2021, 49(6):1228-1236.
[6]BHATT G, MANOHARAN K, CHAUHAN P S, et al. MEMS Sensors for Automotive Applications:A Review[J]. Sensors for Automotive and Aerospace Applications, 2019:223-239.
[7]郭占社, 樊尚春, 庄海涵. 一种谐振式加速度传感器及其设计[J]. 中国机械工程, 2008, 19(21):2570-2572.
GUO Zhanshe, FAN Shangchun, ZHUANG Haihan, et al. A Resonant Accelerometer and Its Design[J]. China Mechanical Engineering, 2008, 19(21):2570-2572.
[8]BABATAIN W, BHATTACHARJEE S, HUSSAIN A M, et al. Acceleration Sensors:Sensing Mechanisms, Emerging Fabrication Strategies, Materials, and Applications[J]. ACS Applied Electronic Materials, 2021, 3(2):504-531.
[9]许高斌, 王亚洲, 陈兴, 等. 纳米压电梁谐振式加速度计[J]. 电子测量与仪器学报, 2020, 34(10):149-155.
XU Gaobin, WANG Yazhou, CHEN Xing, et al. Nano-piezoelectric Beam Resonant Accelerometer[J]. Journal of Electronic Measurement and Instrumentation, 2020, 34(10):149-155.
[10]刘俊作. MEMS加速度传感器性能退化研究与可靠性分析[D]. 成都:电子科技大学, 2022.
LIU Junzuo. Research on Performance Degradation and Reliability Analysis of MEMS Accelerometer[D]. Chengdu:University of Electronic Science and Technology of China, 2022.
[11]PENG T, YOU Z. Reliability of MEMS in Shock Environments:2000—2020[J]. Micromachines, 2021, 12(11):1275.
[12]MAROZAU I, AUCHLIN M, PEJCHAL V, et al. Reliability Assessment and Failure Mode Ana-lysis of MEMS Accelerometers for Space Applications[J]. Microelectronics Reliability, 2018, 88:846-854.
[13]董金龙, 汪立新, 盛立昊, 等. 一种基于Wiener过程加速度计寿命预测自助方法研究[J]. 科学技术与工程, 2013, 13(29):8729-8733.
DONG Jinlong, WANG Lixin, SHENG Lihao, et al. A Self-help Method for Life Prediction Based on Wiener Process Accelerometer[J]. Science Technology and Engineering, 2013, 13(29):8729-8733.
[14]李明珠, 许高斌, 董娜娜, 等. MEMS加速度计在振动环境下的可靠性分析[J]. 半导体光电,2022, 43(6):1055-1061.
LI Mingzhu, XU Gaobin, DONG Nana, et al. Reliability Analysis of MEMS Accelerometer in Vibration Environment[J]. Semiconductor Optoelectronics, 2022, 43(6):1055-1061.
[15]周源, 吕卫民, 孙媛. 基于逆Gaussian过程的MEMS加速度计寿命融合预测方法[J]. 中国惯性技术学报, 2017, 25(6):834-841.
ZHOU Yuan, LYU Weimin, SUN Yuan. Fusion Prediction Method for the Life of MEMS Accelerometer Based on Inverse Gaussian Process[J]. Journal of Chinese Inertial Technology, 2017, 25(6):834-841.
[16]马喜宏, 王威, 何程, 等. 基于退化量分布的高量程MEMS加速度计的可靠性评估[J]. 电子器件, 2018, 41(4):991-996.
MA Xihong, WANG Wei, HE Cheng, et al. Reliability Evaluation of High Range Mems Accelero-meter Based on Degradation Distribution[J]. Chinese Journal of Electron Devices, 2018, 41(4):991-996.
[17]盖炳良, 滕克难, 王浩伟, 等. 基于加速因子不变原则的加速度计可靠性分析[J]. 中国惯性技术学报, 2018 (6):835-840.
GAI Bingliang, TENG Kenan, WANG Haowei, et al. Reliability Analysis for Accelerometers Based on Invariant Principle of Acceleration Factor[J]. Journal of Chinese Inertial Technology, 2018 (6):835-840.
[18]许高斌, 花翔, 杜林云, 等. 新型高g值压阻式加速度计设计[J]. 仪表技术与传感器, 2020(10):42-46.
XU Gaobin, HUA Xiang, DU Linyun, et al. Design of Novel High g Value Piezoresistive Accelerometer[J]. Instrument Technique and Sensor, 2020(10):42-46.
[19]张宇, 许高斌, 尹盛华, 等. 多梁凹槽高g值加速度计的设计与分析[J]. 电子测量与仪器学报, 2023, 37(4):90-97.
ZHANG Yu, XU Gaobin, YIN Shenghua, et al. Design and Analysis of High-g-value Accelerometer with Multi-beam Groove[J]. Journal of Electronic Measurement and Instrumentation, 2023, 37(4):90-97.
[20]LIU H. Reliability and Maintenance Modeling for Competing Risk Processes with Weibull Inter-arrival Shocks[J]. Applied Mathematical Modelling, 2019, 71:194-207.
[21]CAI B, FAN H, SHAO X, et al. Remaining Useful Life Reprediction Methodology Based on Wiener Process:Subsea Christmas Tree System as a Case Study[J]. Computers & Industrial Engineering, 2021, 151:106983.
[22]RAFIEE K, FENG Q, COIT D W. Condition-based Maintenance for Repairable Deteriorating Systems Subject to a Generalized Mixed Shock Model[J]. IEEE Transactions on Reliability, 2015, 64(4):1164-1174.
[23]许高斌, 余智, 徐礼建, 等. 复杂环境电容式微加速度传感器可靠性分析[J]. 电子测量与仪器学报, 2019, 33(8):154-159.
XU Gaobin, YU Zhi, XU Lijian, et al. Reliability Analysis of Capacitive Microaccelerometer in Complex Environment[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(8):154-159.
[24]LYU H, QU H, YANG Z, et al. Reliability Ana-lysis of Dependent Competing Failure Processes with Time-varying δ Shock Model[J]. Reliability Engineering & System Safety, 2023, 229:108876.
[25]RAFIEE K, FENG Q, COIT D W. Reliability Modeling for Dependent Competing Failure Processes with Changing Degradation Rate[J]. IIE Transactions, 2014, 46(5):483-496.
[26]TABANDEH A, JIA G, GARDONI P. A Review and Assessment of Importance Sampling Methods for Reliability Analysis[J]. Structural Safety, 2022, 97:102216.
|