中国机械工程 ›› 2024, Vol. 35 ›› Issue (05): 792-801.DOI: 10.3969/j.issn.1004-132X.2024.05.004

• 不确定性度量与传播分析 • 上一篇    下一篇

基于主动学习与贝叶斯深度神经网络的高维多输出不确定性传播方法

刘竟飞1;姜潮2;倪冰雨2;汪宗太3   

  1. 1.河南工业大学机电工程学院,郑州,450001
    2.湖南大学机械与运载工程学院,长沙,410082
    3.中国核电工程有限公司,北京,100048

  • 出版日期:2024-05-25 发布日期:2024-06-24
  • 作者简介:刘竟飞,男,1991年生,讲师、博士。研究方向为基于深度学习的复杂装备不确定性建模与可靠性设计。E-mail:liujingfei@haut.edu.cn。
  • 基金资助:
    国家自然科学基金重点项目(52235005);河南省高等学校重点科研项目计划(23A460011);河南工业大学高层次人才科研启动基金(2022BS025);国家自然科学基金(52175224)

High Dimensional Multioutput Uncertainty Propagation Method via Active Learning and Bayesian Deep Neural Network

LIU Jingfei1;JIANG Chao2;NI Bingyu2;WANG Zongtai3   

  1. 1.School of Mechanical and Electrical Engineering,Henan University of Technology,
    Zhengzhou,450001
    2.School of Mechanical and Vehicle Engineering,Hunan University,Changsha,410082
    3.China Nuclear Power Engineering Co.,Ltd.,Beijing,100048

  • Online:2024-05-25 Published:2024-06-24

摘要: 针对实际工程中存在的具有多个输出响应的高维问题,提出一种基于主动学习与贝叶斯深度神经网络的高维多输出不确定性传播方法。利用多个输出响应对应同一组输入变量的特点,对输入变量进行一次性采样,从而构造初始训练样本集。采用贝叶斯深度神经网络初步构建高维多输出问题的代理模型。贝叶斯深度神经网络能够同时求解多个预测输出响应的不确定性估计,基于该特点发展了一种针对高维多输出问题的主动加点策略,通过主动学习的方式进一步构建具有较高精度的高维多输出代理模型。然后,利用蒙特卡罗采样方法以及高斯混合模型求解多个输出响应的联合概率密度函数。研究结果表明,所提方法不仅能够避免分别对多个输出响应进行独立求解的复杂过程,而且能够利用多个输出响应之间的关联,主动筛选关键样本点进行建模,在一定程度上提高了高维多输出问题的求解效率。最后,通过几个数值算例验证了所提方法的有效性。

关键词: 主动学习, 贝叶斯深度神经网络, 高维不确定性, 多输出问题

Abstract: An uncertainty propagation method was proposed based on active learning and BDNN for solving the high dimensional multioutput problems existed in practical engineering. Since the multiple output responses corresponded to the same input variables, the efficient one-step sampling was implemented and the initial training dataset was established. BDNN was utilized for initially establishing the surrogate model for high dimensional multioutput problem. Because BDNN might provide the uncertainty estimation for multiple predictive output responses simultaneously, an active sampling strategy was proposed for high dimensional multioutput problem. Then, Monte Carlo sampling(MCS) method and Gaussian mixture model were combined for computing the joint probability density function of multiple output responses. The results show that proposed method may avoid the repeated computing processes for different output responses individually, and make full use of the internal relationship among multiple output responses for implementing active learning. Therefore, the efficiency for solving high-dimensional multioutput problems may be improved to some extent. Finally, several numerical examples were utilized to validate the efficiency of the proposed method. 

Key words: active learning, Bayesian deep neural network(BDNN), high dimensional uncertainty, multioutput problem

中图分类号: