[1]赵连城, 郑玉峰. 形状记忆与超弹性镍钛合金的发展和应用[J]. 中国有色金属学报, 2004, 14(专辑1):323-326.
ZHAO Liancheng, ZHENG Yufeng. Development and Applications of Nickel-Titanium Alloys with Shape Memory Effect and Superelasticity[J]. The Chinese Journal of Nonferrous Metals, 2004, 14(S1):323-326.
[2]IANAGUI A, TANNURI E A. A Sliding Mode Torque and Position Controller for an Antagonistic SMA Actuator[J]. Mechatronics, 2015, 30:126-139.
[3]TAI N T, AHN K K. A RBF Neural Network Sliding Mode Controller for SMA Actuator[J]. International Journal of Control, Automation and Systems, 2010, 8(6):1296-1305.
[4]NICOLAU-KUKLINSKA A, LATKO-DURALEK P, NAKONIECZNA P, et al. A New Electroactive Polymer Based on Carbon Nanotubes and Carbon Grease as Compliant Electrodes for Electroactive Actuators[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(7):1520-1530.
[5]SHAW J A, KYRIAKIDES S. Thermomechanical Aspects of NiTi[J]. Journal of the Mechanics and Physics of Solids, 1995, 43(8):1243-1281.
[6]SANDOVAL L, HASKINS J B, LAWSON J W. Stability, Structure, and Suppression of the Martensitic Transition Temperature by B19′ Compound Twins in NiTi:Ab Initio and Classical Simulations[J]. Acta Materialia, 2018, 154:182-189.
[7]李洁, 周勇, 张俊. 多孔NiTi合金制备的研究现状[J]. 热处理技术与装备, 2013, 34(1):36-40.
LI Jie, ZHOU Yong, ZHANG Jun. Research Status on Preparation of Porous NiTi Alloy[J]. Heat Treatment Technology and Equipment, 2013, 34(1):36-40.
[8]WEINERT K, PETZOLDT V. Machining of NiTi Based Shape Memory Alloys[J]. Materials Science and Engineering:A, 2004, 378(1/2):180-184.
[9]MEHRPOUYA M, SHAHEDIN A M, DAWOOD S D S, et al. An Investigation on the Optimum Machinability of NiTi Based Shape Memory Alloy[J]. Materials and Manufacturing Processes, 2017, 32(13):1497-1504.
[10] KAYNAK Y, KARACA H E, NOEBE R D, et al. Analysis of Tool-wear and Cutting Force Components in Dry, Preheated, and Cryogenic Machining of NiTi Shape Memory Alloys[J]. Procedia CIRP, 2013, 8:498-503.
[11]KAYNAK Y, MANCHIRAJU S, JAWAHIR I S, et al. Chip Formation and Phase Transformation in Orthogonal Machining of NiTi Shape Memory Alloy:Microstructure-based Modelling and Experimental Validation[J]. CIRP Annals:Manufacturing Technology, 2020, 69(1):85-88.
[12]KAYNAK Y, HUANG B, KACARA H E, et al. Surface Characteristics of Machined NiTi Shape Memory Alloy:the Effects of Cryogenic Cooling and Preheating Conditions[J]. Journal of Materials Engineering and Performance, 2017, 26(7):3597-3606.
[13]KAYNAK Y, KACARA H E, JAWAHIR I S. Surface Integrity Characteristics of NiTi Shape Memory Alloys Resulting from Dry and Cryogenic Machining[J]. Procedia CIRP, 2014, 13(1):393-398.
[14]KAYNAK Y, KACARA H E, NOEBE R D, et al. The Effect of Active Phase of the Work Material on Machining Performance of a NiTi Shape Memory Alloy[J]. Metallurgical and Materials Transactions A, 2015, 46(6):2625-2636.
[15]KAYNAK Y. Machining and Phase Transformation Response of Room-temperature Austenitic NiTi Shape Memory Alloy[J]. Journal of Materials Engineering and Performance, 2014, 23(9):3354-3360.
[16]ZHAO Y, LI J, GUO K, et al. Study on Chip Formation Characteristics in Turning NiTi Shape Memory Alloys[J]. Journal of Manufacturing Processes, 2020, 58:787-795.
|