[1]雷明凯, 郭东明. 高性能表面层制造:基于可控表面完整性的精密制造[J]. 机械工程学报, 2016, 52(17):187-197.
LEI Mingkai, GUO Dongming. High-performance Surface Layer Manufacturing:a Precision Processing Method Based on Controllable Surface Integrity[J]. Journal of Mechanical Engineering, 2016, 52(17):187-197.
[2]盛晓敏, 谢桂芝, 尚振涛. 高速/超高速磨削工艺[M]. 北京:科学出版社, 2015.
SHENG Xiaomin, XIE Guizhi, SHANG Zhentao. High Speed/Ultra High Speed Grinding Technology[M]. Beijing:Science Press, 2015.
[3]黄宇岑. TC4钛合金高速外圆磨削实验研究[D]. 湘潭:湖南科技大学, 2016.
HUANG Yucen. Experimental Study on High Speed Cylindrical Grinding of TC4 Titanium Alloy[D]. Xiangtan:Hunan University of Science and Technology, 2016.
[4]尹国强, 巩亚东, 温雪龙, 等. 新型点磨削砂轮磨削力模型及试验研究[J]. 机械工程学报, 2016, 52(9):193-200.
YIN Guoqiang, GONG Yadong, WEN Xuelong, et al. Modeling and Experimental Investigations on Point Grinding Force for Novel Point Grinding Wheel[J]. Journal of Mechanical Engineering, 2016, 52(9):193-200.
[5]LIU Mingzheng, LI Changhe, ZHANG Yanbin, et al. Analysis of Grinding Mechanics and Improved Grinding Force Model Based on Randomized Grain Geometric Characteristics[J]. Chinese Journal of Aeronautics, 2023, 36(7):160-193.
[6]ZHANG Yanbin, LI Changhe, JI Heju, et al. Analysis of Grinding Mechanics and Improved Predictive Force Model Based on Material-removal and Plastic-stacking Mechanisms[J]. International Journal of Machine Tools and Manufacture, 2017, 122:81-97.
[7]JAMSHIDI H, GURTAN M, BUDAK E. Identification of Active Number of Grits and Its Effects on Mechanics and Dynamics of Abrasive Processes[J]. Journal of Materials Processing Technology, 2019, 273:116239.
[8]SAVARIA V, BRIDIER F, BOCHER P. Predicting the Effects of Material Properties Gradient and Residual Stresses on the Bending Fatigue Strength of Induction Hardened Aeronautical Gears[J]. International Journal of Fatigue, 2016, 85:70-84.
[9]SUN Cong, XIU Shichao, HONG Yuan, et al. Prediction on Residual Stress with Mechanical-thermal and Transformation Coupled in DGH[J]. International Journal of Mechanical Sciences, 2020, 179:105629.
[10]XIAO Guijian, CHEN Benqiang, LI Shaochuan, et al. Fatigue Life Analysis of Aero-engine Blades for Abrasive Belt Grinding Considering Residual Stress[J]. Engineering Failure Analysis, 2022, 131:105846.
[11]LEE P H, NAM T S, LI Chengjun, et al. Environmentally-friendly Nano-fluid Minimum Quantity Lubrication(MQL) Meso-scale Grinding Process Using Nano-diamond Particles[C]∥2010 International Conference on Manufacturing Automation. Hong Kong, 2010:44-49.
[12]WANG Sheng, LI Changhe, ZHANG Xiaowei, et al. Modeling and Simulation of the Single Grain Grinding Process of the Nano-particle Jet Flow of Minimal Quantity Lubrication[J]. The Open Materials Science Journal, 2014, 8(1):55-62.
[13]YOUNIS M, SADEK M M, EL-WARDANI T. A New Approach to Development of a Grinding Force Model[J]. Journal of Engineering for Industry, 1987, 109(4):306-313.
[14]MALKIN S, GUO C. Grinding Technology:Theory and Applications of Machining with Abrasives[M]. 2nd ed. New York:Industrial Press, 2008.
[15]ZHOU Ming, ZHENG Wei. A Model for Grinding Forces Prediction in Ultrasonic Vibration Assisted Grinding of SiCp/Al Composites[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9):3211-3224.
[16]董昊. 螺旋锥齿轮旋转超声振动辅助磨削的磨削力机理研究[D]. 天津:天津理工大学, 2021.
DONG Hao. Research on Grinding Force Mechanism of Spiral Bevel Gear Rotational Ultrasonic Vibration Assisted Grinding[D]. Tianjin:Tianjin University of Technology, 2021.
[17]陈日曜. 金属切削原理[M].2版. 北京:机械工业出版社, 2015.
CHEN Riyao. Metal Cutting Principles[M].2nd edn. Beijing:China Machine Press, 2015.
[18]LI Benkai, DAI Chenwei, DING Wenfeng, et al. Prediction on Grinding Force during Grinding Powder Metallurgy Nickel-based Superalloy FGH96 with Electroplated CBN Abrasive Wheel[J]. Chinese Journal of Aeronautics, 2021, 34(8):65-74.
[19]PATNAIK D U S, SINGH V, VENKATESWARA R P. A New Model for Grinding Force Prediction and Analysis[J]. International Journal of Machine Tools and Manufacture, 2010, 50(3):231-240.
[20]QIN Delin, WANG Feng, XI Fangjian, et al. A Theoretical Model of Grinding Force and Its Simulation[J]. Advanced Materials Research, 2013, 690/691/692/693:2395-2402.
[21]DAI Chenwei, YIN Zhen, DING Wenfeng, et al. Grinding Force and Energy Modeling of Textured Monolayer CBN Wheels Considering Undeformed Chip Thickness Nonuniformity[J]. International Journal of Mechanical Sciences, 2019, 157/158:221-230.
[22]KULIK O G, DEMENKOV V A. Kinematics and Dynamics of Chip Formation during Grinding[J]. Procedia Engineering, 2017, 206:210-215.
[23]TANG Jinyuan, DU Jin, CHEN Yongping. Modeling and Experimental Study of Grinding Forces in Surface Grinding[J]. Journal of Materials Processing Technology, 2009, 209(6):2847-2854.
[24]刘鸿文. 材料力学I[M]. 5版. 北京:高等教育出版社, 2011.
LIU Hongwen. Mechanics of Materials I[M]. 5th ed. Beijing:Higher Education Press, 2011.
[25]田欣利, 王龙, 刘谦, 等. 20CrMnTi钢齿面磨削力模型构建与分析[J]. 机械工程学报, 2018, 54(3):227-232.
TIAN Xinli, WANG Long, LIU Qian, et al. Construction and Analysis of Grinding Force Model of 20CrMnTi Steel Tooth Surface[J]. Journal of Mechanical Engineering, 2018, 54(3):227-232.
[26]王栋, 张志鹏, 赵睿, 等. 基于遗传算法的磨削力模型系数优化及验证[J]. 郑州大学学报(工学版), 2024, 45(1):21-28.
WANG Dong, ZHANG Zhipeng, ZHAO Rui, et al. Coefficient Optimization of Grinding Force Model Based on Genetic Algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(1):21-28.
[27]刘伟. 基于单颗磨粒切削的氮化硅陶瓷精密磨削仿真与实验研究[D]. 长沙:湖南大学, 2014.
LIU Wei. Simulation and Experiment Study of the Precision Grinding of Silicon Nitride Ceramic Based on Single Grain Cutting[D]. Changsha:Hunan University, 2014.
[28]张锦涛. 18CrNiMo7-6钢外圆磨削温度及表面完整性研究[D]. 郑州:郑州大学, 2021.
ZHANG Jintao. Research on Grinding Temperature and Surface Integrity of 18CrNiMo7-6 Steel Cylindrical Grinding[D]. Zhengzhou:Zhengzhou University, 2021.
|