[1]瓦尔特.进给率堪比铝合金的高温合金加工[J].今日制造与升级,2019,3(13):38-39.
WALTER. The Feed Rate is Comparable to the High Temperature Alloy Processing of Aluminum Alloy[J]. Manufacture and Upgrade Today, 2019,3(13):38-39.
[2]KENNY S D, MULLIAH D, SANZ-NAVARRO C F, et al. Molecular Dynamics Simulations of Nanoindentation and Nanotribology[J].Philosophical Transactions:Mathematical, Physical and Engineering Sciences, 2005,363:1949-1959.
[3]王煜烨, 汤爱涛,潘荣剑,等.分子动力学在镁及镁合金微观塑性变形中的应用进展[J].材料导报, 2019,33(10):3290-3297.
WANG Yeyu, TANG Aitao, PAN Rongjian,et al. Advances in the Application of Molecular Dynamics in Microplastic Deformation of Magnesium and Its Alloys[J]. Material Review, 2019, 33(10):3290-3297.
[4]ZHOU Tingting,HUANG Chuanzhen, YI Mingdong. First-principle Calculation of Al2O3(012)/SiC(310) Interface Model[J]. Materials Science Forum, 2017,896:120-127.
[5]张国定.金属基复合材料界面问题[J].材料研究学 报,1997,11(6):649-657.
ZHANG Guoding. Interface Problems of Metal Matrix Composites[J]. Journal of Materials Research, 1997,11(6):649-657.
[6]HILL R. The Elastic Behaviour of a Crystalline Aggregate[J]. Proceedings of the Physical Society, 1952, 65(5):349-354.
[7]NEMBACH E, NEITE G.Precipitation Hardening of Superalloys by Ordered γ′-particles[J].Progress in Materials Science,1985, 29(3):177-319.
[8]娄瑾,陈康华,刘力.镍基高温合金晶面弹性常数的两相模型计算[J]. 热加工工艺,2017, 46(4):58-61.
LOU Jin, CHEN Kanghua, LIU Li. A Two-phase Model for Calculating the Elastic Constant of Crystal Surface of Nickel-based Superalloy[J].Hot Working Technology,2017, 46(4):66-69.
[9]于慧臣,吴学仁.航空发动机设计用材料数据手册[M].北京:航空工业出版社,2010:91-105.
YU Huichen, WU Xueren. Material Data Manual for Aircraft Engine Design[M]. Beijing:Aviation Industry Press,2010:91-105.
[10]马廉洁,谭福慧,王佳.车削氧化铝陶瓷刀具磨损有限元仿真研究[J].信息技术,2017(5):93-95.
MA Lianjie, TAN Fuhui, WANG Jia. Finite Element Simulation Study on Tool Wear of Turning Alumina Ceramic[J]. Information Technology, 2017(5):93-95.
[11]DAW M S, BASKES M I. Embedded-atom Method:derivation and Application to Impurities, Surfaces, and Other Defects in Metals[J]. Physical Review B, 1984, 29:6443-6453.
[12]TERSOFF J. Modeling Solid-state Chemistry:interatomic Potentials for Multi-component Systems[J]. Physical Review B,1989,39(8):55-66.
[13]TERSOFF J. Erratum:Modeling Solid-state Chemistry:Interatomic Potentials for Multicomponent Systems[J]. Physical Review B, 1990,41(5):32-48.
[14]KOMANDURI R, RAFF L M. A Review on the Molecular Dynamics Simulation of Machining at the Atomic Scale[J]. Proceedings of the Institution of Mechanical Engineers, Part B.Journal of Engineering Manufacture,2001,215(B12):1639-1672.
[15]MAEKAWA K, ITOH A. Friction and Tool Wear in Nano-scale Machining—a Molecular Dynamics Approach[J]. Wear, 1995, 188(1/2) :115-122.
[16]GIRIFALCO L A , WEIZER V G. Application of the Morse Potential Function to Cubic Metals[J]. Physical Review, 1959,114(3):687-690.
[17]LIU Lisheng, SUN Shijin, ZHANG Qingjie, et al. The Mechanical Properties of Skutterudite CoAs3 by Molecular Dynamics (MD) Simulation[J]. Journal of Wuhan University of Technology(Materials Science Edition),2008,23(3):415-418.
[18]KUBICKI J D, LASAGA A C. Molecular Dynamics Simulations of SiO2 Melt and Glass:ionic and Covalent Models[J]. American Mineralogist, 1988,73:941-955.
[19]罗熙淳,梁迎春,董申.单晶铝纳米切削过程分子动力学模拟技术研究[J]. 中国机械工程,2000,11(8):860-864.
LUO Xichun, LIANG Yingchun, DONG Shen. Molecular Dynamics Simulation of Single Crystal Aluminum Nanometer Cutting Process[J]. China Mechanical Engineering, 2000,11(8):860-864.
[20]周婷婷.陶瓷刀具材料纳观界面行为和微观断裂行为模拟研究[D].济南:山东大学,2012.
ZHOU Tingting. Simulation Study on Nanoscopic Interface Behavior and Microscopic Fracture Behavior of Ceramic Tool Materials[D]. Jinan:Shandong University, 2012.
[21]van der MERWE J H. Interfacial Energy:bicrystals of Semi-infinite Crystals[J]. Progress in Surface Science, 2001,67:365-381.
[22]CHRISTENSEN M, DUDIY S, WAHNSTROM G. First-principles Simulations of Metal-ceramic Interface Adhesion:Co/WC Versus Co/TiC[J]. Physical Review B, 2002,65(4):1-9.
[23]王宏志,高镰,归林华,等.晶内型Al2O3/SiC纳米复合陶瓷的制备[J].无机材料学报,1997,12(5):671-674.
WANG Hongzhi, GAO Lian, GUI Linhua, et al. Preparation of Intracrystalline Al2O3/SiC Nanocomposite Ceramics[J]. Journal of Inorganic Materials, 1997,12(5):671-674.
|