China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (11): 2574-2582.DOI: 10.3969/j.issn.1004-132X.2025.11.012
Zhibo CHEN1, Guoping LI1(
), Sitong XIANG1, Yanding WEI2
Received:2024-10-28
Online:2025-11-25
Published:2025-12-09
Contact:
Guoping LI
通讯作者:
李国平
作者简介:陈智博,男,1999年生,硕士研究生。研究方向为压电精密驱动基金资助:CLC Number:
Zhibo CHEN, Guoping LI, Sitong XIANG, Yanding WEI. Dynamic Perception and Experimental Study of Tactile Texture Based on Ultrasonic Resonance Squeeze Film Effect[J]. China Mechanical Engineering, 2025, 36(11): 2574-2582.
陈智博, 李国平, 项四通, 魏燕定. 基于超声谐振挤压膜效应的触觉纹理动态感知及实验研究[J]. 中国机械工程, 2025, 36(11): 2574-2582.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.11.012
| 参数 | 数值 |
|---|---|
| 压电振子半径/mm | 12.5 |
| 压电陶瓷层厚度/mm | 2 |
| 玻璃覆层厚度/mm | 2 |
| 背衬架支撑部壁厚/mm | 1 |
Tab.1 Main dimensional parameters of the device
| 参数 | 数值 |
|---|---|
| 压电振子半径/mm | 12.5 |
| 压电陶瓷层厚度/mm | 2 |
| 玻璃覆层厚度/mm | 2 |
| 背衬架支撑部壁厚/mm | 1 |
| 材质纹理 | 激励频率/kHz | 激励电压/V |
|---|---|---|
| 打印用纸 | 36.314 | 107 |
| 磨砂玻璃 | 75 | |
| 塑料(ABS) | 129 | |
| 碳纤维 | 179 | |
| 木纹(顺纹) | 98 | |
| 木纹(逆纹) | 84 |
Tab.2 Control signal parameters for six material textures
| 材质纹理 | 激励频率/kHz | 激励电压/V |
|---|---|---|
| 打印用纸 | 36.314 | 107 |
| 磨砂玻璃 | 75 | |
| 塑料(ABS) | 129 | |
| 碳纤维 | 179 | |
| 木纹(顺纹) | 98 | |
| 木纹(逆纹) | 84 |
| 材质纹理 | 设定纹理值 | 预测纹理值 | 误差/% |
|---|---|---|---|
| 打印用纸 | 1 | 1.0621 | 6.21 |
| 磨砂玻璃 | 2 | 1.9929 | 0.71 |
| 塑料(ABS) | 3 | 2.9434 | 5.66 |
| 碳纤维 | 4 | 3.9939 | 0.61 |
| 木纹(顺纹) | 5 | 4.9951 | 0.49 |
| 木纹(逆纹) | 6 | 5.9368 | 6.32 |
Tab.3 Prediction results of the temporal force signal and tactile texture prediction model
| 材质纹理 | 设定纹理值 | 预测纹理值 | 误差/% |
|---|---|---|---|
| 打印用纸 | 1 | 1.0621 | 6.21 |
| 磨砂玻璃 | 2 | 1.9929 | 0.71 |
| 塑料(ABS) | 3 | 2.9434 | 5.66 |
| 碳纤维 | 4 | 3.9939 | 0.61 |
| 木纹(顺纹) | 5 | 4.9951 | 0.49 |
| 木纹(逆纹) | 6 | 5.9368 | 6.32 |
| [1] | DI STEFANO N, SPENCE C. Roughness Perception: a Multisensory/Crossmodal Perspective[J]. Attention, Perception, & Psychophysics, 2022, 84(7): 2087-2114. |
| [2] | TYMMS C, GARDNER E P, ZORIN D. A Quantitative Perceptual Model for Tactile Roughness[J]. ACM Transactions on Graphics, 2018, 37(5): 1-14. |
| [3] | OKAMOTO S, NAGANO H, YAMADA Y. Psychophysical Dimensions of Tactile Perception of Textures[J]. IEEE Transactions on Haptics, 2013, 6(1): 81-93. |
| [4] | 唐玮, 李聪, 束云潇, 等. 材料弹性对摩擦触觉感知的影响研究[J]. 机械工程学报, 2023, 59(15): 174-184. |
| TANG Wei, LI Cong, SHU Yunxiao, et al. Influence of Elastic Properties of Material on Tactile Perception[J]. Journal of Mechanical Engineering, 2023, 59(15): 174-184. | |
| [5] | 刘陶峰, 李一员, 李炜, 等. 确定性纹理表面特征高度对皮肤摩擦感知的影响[J]. 西南交通大学学报, 2020, 55(2): 372-378. |
| LIU Taofeng, LI Yiyuan, LI Wei, et al. Influence of Surface Feature height of Deterministic Texture on Tactile Perception of Fingertip[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 372-378. | |
| [6] | 周丽丽, 姚欣茹, 汤征宇, 等. 触觉信息处理及其脑机制[J]. 科技导报, 2017, 35(19): 37-43. |
| ZHOU Lili, YAO Xinru, TANG Zhengyu, et al. Neural Mechanisms of Tactile Information Processing[J]. Science & Technology Review, 2017, 35(19): 37-43. | |
| [7] | HAYWARD V, TEREKHOV A V, WONG S C, et al. Spatio-temporal Skin Strain Distributions Evoke Low Variability Spike Responses in Cuneate Neurons[J]. Journal of the Royal Society Interface, 2014, 11(93): 20131015. |
| [8] | ROMANO J M, KUCHENBECKER K J. Creating Realistic Virtual Textures from Contact Acceleration Data[J]. IEEE Transactions on Haptics, 2012, 5(2): 109-119. |
| [9] | EGE E S, BALIKCI A. Transparent Localized Haptics: Utilization of PVDF Actuators on Touch Displays[J]. Actuators, 2023, 12(7): 289. |
| [10] | WINFIELD L, GLASSMIRE J, COLGATE J E, et al. T-pad: Tactile Pattern Display through Variable Friction Reduction[C]∥ Second Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems (WHC’ 07. Tsukuba, IEEE, 2007: 421-426. |
| [11] | MARCHUK N D, COLGATE J E, PESHKIN M A. Friction Measurements on a Large Area TPaD[C]∥2010 IEEE Haptics Symposium. Waltham,IEEE, 2010: 317-320. |
| [12] | XU H, PESHKIN M A, COLGATE J E. How the Mechanical Properties and Thickness of Glass Affect TPaD Performance[J]. IEEE Transactions on Haptics, 2020, 13(3): 483-492. |
| [13] | VEZZOLI E, MESSAOUD W B, AMBERG M, et al. Physical and Perceptual Independence of Ultrasonic Vibration and Electrovibration for Friction Modulation[J]. IEEE Transactions on Haptics, 2015, 8(2): 235-239. |
| [14] | 王瑞锋, 王亮, 贾博韬, 等. 新型贴片式扭振压电作动器的设计与实验研究[J]. 振动工程学报, 2021, 34(3): 481-489. |
| WANG Ruifeng, WANG Liang, JIA Botao, et al. Design and Tests of a Surface-bonded Type Torsional Piezoelectric Actuator[J]. Journal of Vibration Engineering, 2021, 34(3): 481-489. | |
| [15] | BAO Minhang. Analysis and Design Principles of MEMS Devices[M]. Amsterdam: Elsevier Science Ltd., 2005. |
| [16] | BIET M, GIRAUD F, LEMAIRE-SEMAIL B. Squeeze Film Effect for the Design of an Ultrasonic Tactile Plate[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, 54(12): 2678-2688. |
| [17] | SEDNAOUI T, VEZZOLI E, DZIDEK B, et al. Friction Reduction through Ultrasonic Vibration Part 2: Experimental Evaluation of Intermittent Contact and Squeeze Film Levitation[J]. IEEE Transactions on Haptics, 2017, 10(2): 208-216. |
| [18] | 潘志泳, 王亮, 金家楣, 等. 贴片式圆盘定子多自由度超声电机的设计与实验[J]. 中国机械工程, 2025, 36(1): 38-46. |
| PAN Zhiyong, WANG Liang, JIN Jiamei, et al. Design and Experiments of Bonded-type Disc Stator M-DOF Ultrasonic Motors[J]. China Mechanical Engineering, 2025, 36(1): 38-46. | |
| [19] | 尚凡成,李传庆,詹可,等.改进LSTM神经网络在极短期波浪时序预报中的应用[J].上海交通大学学报, 2023, 57(6): 659-665. |
| SHANG Fancheng, LI Chuanqing, ZHAN Ke, et al. Application of Improved LSTM Neural Network in Time-series Prediction of Extreme Short-term Wave[J]. Journal of Shanghai Jiao Tong University, 2023, 57(6): 659-665. | |
| [20] | 石晴晴,张润锋,张连洪,等.基于强化学习算法的水下滑翔机路径跟踪研究[J].中国机械工程, 2023, 34(9): 1100-1110. |
| SHI Qingqing, ZHANG Runfeng, ZHANG Lianhong, et al. Research on Underwater Gliders Path Tracking Based on Reinforcement Learning Algorithm[J]. China Mechanical Engineering, 2023, 34(9): 1100-1110. |
| [1] | ZHENG Jintao, MA Haoran, WANG Jin, LIU Guoliang. Experimental Study of Ultrasonic Vibration Assisted Turning Titanium Alloys with Nanofluid MQL [J]. China Mechanical Engineering, 2025, 36(04): 743-752,759. |
| [2] | ZHANG Chao1, REN Yinghui1, 2, YU Xiaolin1, LI Maojun2, YU Chengyang2, DU Xinliang1. Material Removal Mechanism of CFRP in Longitudinal-torsional Ultrasonic Milling Based on Mesoscopic Simulation Model [J]. China Mechanical Engineering, 2025, 36(04): 760-769,779. |
| [3] | SONG Pengfei1, 2, CAO Miaoyan1, 2, FU Min1, 2, CUI Yashuo1, 2, LI Yunfeng1, 2, LIU Zheng1, 2. Ultrasonic Vibration Softening Johnson-Cook Modeling and Validation of Thin Tube Curling Experiments [J]. China Mechanical Engineering, 2024, 35(12): 2106-2113,2121. |
| [4] | KANG Renke, LU Bingwei, CHEN Kailiang, LI Shengchao, DAI Jingbin, DONG Zhigang, BAO Yan. Study on Tearing of CFRP Thin Circular Tubes Machined by Ultrasonic Vibration Assisted Grinding [J]. China Mechanical Engineering, 2024, 35(03): 524-533,540. |
| [5] | LIU Ying, CHEN Yue, ZHAO Xueli, YU Tongmin, ZHU Tieli, . Study on Properties of Ultrasonic-assisted Injection Molding of Carbon Fiber-reinforced Polypropylene Parts [J]. China Mechanical Engineering, 2023, 34(16): 1975-1981. |
| [6] | HAN Guangchao, YANG Jiakai, YE Zejiu, XU Linhong, ZHANG Haiou, YANG Haitao. Research on Longitudinal-Torsion Compound Ultrasonic Vibration Dry Milling Characteristics for AlMgSc Alloys Formed by Arc Micro-casting and Forging Additive Manufacturing [J]. China Mechanical Engineering, 2022, 33(24): 2971-2979,2989. |
| [7] | DONG Xianglong, ZHENG Lei, SONG Chunyang, LYU Dongming, XU Subai, WEI Wendong, QIN Peng. Finite Element Simulation and Experimental Study of Grinding Holes of SiC Ceramic Rotary Ultrasonic Vibration Trepanning Drilling [J]. China Mechanical Engineering, 2022, 33(17): 2107-2114. |
| [8] | SHEN Cheng;ZOU Ping;KANG Di;WANG Wenjie. Experimental Study on Ultrasonic Vibration Lens Assisted Laser Drilling [J]. China Mechanical Engineering, 2020, 31(21): 2542-2546. |
| [9] | LIU Ying;BI Jie;YU Tongmin. Salt Spray Aging Property of Molded Parts under Different Processing Parameters and Ultrasonic Vibrations [J]. China Mechanical Engineering, 2020, 31(09): 1115-1122. |
| [10] | ZOU YilanWEN DonghuiWANG YangyuXIAO YutingZOU Lei. Experimental Study and EDEM Numerical Simulation of Ultrasonic Vibration Finishing [J]. China Mechanical Engineering, 2020, 31(06): 647-654,661. |
| [11] | WANG Yuling, LIU Shanyong, ZHANG Xiangyu, LIU Yongwu, LI Rongchao. Experiments and Analyses of 3540Fe/CeO2 Coatings by Ultrasonic Vibration Assisted Laser Cladding [J]. China Mechanical Engineering, 2018, 29(21): 2600-2605. |
| [12] | LI Hui1;ZHENG Zhizhen1;WU Xiao1,2;LI Jianjun1. Rheological Forming Ability of Zr55Cu30Al10Ni5 Bulk Metallic Glasses under Ultrasonic Vibration Fields [J]. China Mechanical Engineering, 2017, 28(20): 2514-2519. |
| [13] | WANG Yan, WANG Shuai, LIU Jianguo, LI Delin. One Dimensional Oblique Ultrasonic Vibration Assisted Grinding for Rolling Bearing Steels and Experimental Validation [J]. China Mechanical Engineering, 2017, 28(09): 1021-1028. |
| [14] | ZHA Changli, CHEN Wei. Effects of Ultrasonic Vibration on Drawing Height and Fracture Quality at Corners of Micro-square Cup [J]. China Mechanical Engineering, 2017, 28(05): 603-606. |
| [15] | Zeng Yifan, Yang Weiping, Wu Yongbo, Liu Manli. Mechanism of Surface Formation of Silicon Wafer Processed by Fixed Abrasive Polishing with Assistance of Ultrasonic Vibration and Experiments [J]. China Mechanical Engineering, 2016, 27(23): 3208-3214. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||