China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (11): 2563-2573.DOI: 10.3969/j.issn.1004-132X.2025.11.011
Qiong WEI, Linyong BAI, Zichao CHEN, Daode ZHANG, Yi LI(
)
Received:2024-06-02
Online:2025-11-25
Published:2025-12-09
Contact:
Yi LI
通讯作者:
李奕
作者简介:魏琼,女,1980年生,副教授。研究方向为流体传动控制、机电伺服系统设计。E-mail:20140058@hbut,edu.cn。
基金资助:CLC Number:
Qiong WEI, Linyong BAI, Zichao CHEN, Daode ZHANG, Yi LI. Sliding Mode Control for Pneumatic Swing Angle Servo Systems Based on Disturbance Observation and Friction Compensation[J]. China Mechanical Engineering, 2025, 36(11): 2563-2573.
魏琼, 白林勇, 陈子超, 张道德, 李奕. 基于扰动观测和摩擦补偿的气动摆角伺服系统滑模控制[J]. 中国机械工程, 2025, 36(11): 2563-2573.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.11.011
| 参数 | 辨识值 |
|---|---|
| 0.18 | |
| 0.22 | |
| 0.05 | |
| 18.1 | |
| 0.48 | |
| 0.008 |
Tab.1 Friction model parameters
| 参数 | 辨识值 |
|---|---|
| 0.18 | |
| 0.22 | |
| 0.05 | |
| 18.1 | |
| 0.48 | |
| 0.008 |
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| 150 | 1 | ||
| 100 | 15 | ||
| 300 | 13 | ||
| 800 | 1.9 | ||
| 9.5 | 1.85 | ||
| 3 | 2 | ||
| 1 | 3 |
Tab.2 Main simulation parameters
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| 150 | 1 | ||
| 100 | 15 | ||
| 300 | 13 | ||
| 800 | 1.9 | ||
| 9.5 | 1.85 | ||
| 3 | 2 | ||
| 1 | 3 |
| 元器件 | 型号 | 主要参数 |
|---|---|---|
| 摆动气缸 | DSM-T-12-270-A-B | 行程0°~270° |
比例阀 过滤减压阀 | MPYE-5-M5-010-B LFR-3/8-D-MINI-MPA | 限制频率115 Hz,压力范围0.05~1.20 MPa |
| 力矩传感器 | QLN-10-50 N·m | 精度0.3% |
| 压力传感器 | SPAU-P10R-HG18FD-L-PNLK-PNVBA-M8U | 精度0.15% |
| 编码器 | E6C3-CWZ3EH | 分辨率3600 PPR |
Tab.3 Main experimental equipment parameters
| 元器件 | 型号 | 主要参数 |
|---|---|---|
| 摆动气缸 | DSM-T-12-270-A-B | 行程0°~270° |
比例阀 过滤减压阀 | MPYE-5-M5-010-B LFR-3/8-D-MINI-MPA | 限制频率115 Hz,压力范围0.05~1.20 MPa |
| 力矩传感器 | QLN-10-50 N·m | 精度0.3% |
| 压力传感器 | SPAU-P10R-HG18FD-L-PNLK-PNVBA-M8U | 精度0.15% |
| 编码器 | E6C3-CWZ3EH | 分辨率3600 PPR |
| 控制策略 | em/(°) | erms/(°) |
|---|---|---|
| PID | 7.75 | 3.56 |
| NFTSMC | 3.63 | 1.66 |
| NFTSMC-IESO | 1.39 | 0.70 |
| NFTSMC-IESO-F | 1.05 | 0.65 |
Tab.4 Performance metrics of position tracking system at 0.5 Hz
| 控制策略 | em/(°) | erms/(°) |
|---|---|---|
| PID | 7.75 | 3.56 |
| NFTSMC | 3.63 | 1.66 |
| NFTSMC-IESO | 1.39 | 0.70 |
| NFTSMC-IESO-F | 1.05 | 0.65 |
| 控制策略 | em/(°) | erms/(°) |
|---|---|---|
| PID | 17.88 | 7.61 |
| NFTSMC | 10.92 | 4.24 |
| NFTSMC-IESO | 7.03 | 2.84 |
| NFTSMC-IESO-F | 4.19 | 2.55 |
Tab.5 Performance metrics of position tracking system at 1.5 Hz
| 控制策略 | em/(°) | erms/(°) |
|---|---|---|
| PID | 17.88 | 7.61 |
| NFTSMC | 10.92 | 4.24 |
| NFTSMC-IESO | 7.03 | 2.84 |
| NFTSMC-IESO-F | 4.19 | 2.55 |
| 控制策略 | em/(°) | erms/(°) |
|---|---|---|
| NFTSMC-ESO-F | 2.86 | 1.07 |
| NFTSMC-IESO-F | 1.50 | 0.68 |
Tab.6 Performance metrics of position tracking system under external dynamic load
| 控制策略 | em/(°) | erms/(°) |
|---|---|---|
| NFTSMC-ESO-F | 2.86 | 1.07 |
| NFTSMC-IESO-F | 1.50 | 0.68 |
| [1] | QIAN P, LIU L, WU J, et al. A Novel Double-acting, Air-floating, Frictionless Pneumatic Actuator[J]. Sensors and Actuators A: Physical, 2023, 362: 114674. |
| [2] | QIAN P, PU C, HE D, et al. A Method to Improve the Motion Trajectory Tracking Accuracy of Pneumatic Servo System—by Exciting Longitudinal Resonance[J]. Journal of the Brazilian Society of Mechanical Sciences Engineering, 2022, 44(8):376-390. |
| [3] | ZHANG Y, LI K, XU M, et al. Medical Grabbing Servo System with Friction Compensation Based on the Differential Evolution Algorithm[J]. Chinese Journal of Mechanical Engineering, 2021, 34: 1-15. |
| [4] | 金鸿雁, 王磊, 赵希梅. 基于摩擦补偿的两轴直驱伺服进给系统自适应非线性滑模轮廓控制[J]. 中国机械工程, 2023, 34(11): 1335-1342. |
| JIN Hongyan, WANG Lei, ZHAO Ximei, et al. Adaptive Nonliner Sliding Mode Control of Two-axis Direct Drive Sero Feed Systems Based on Fricition Compensation [J]. China Mechanical Engineering, 2023, 34(11): 1335-1342. | |
| [5] | 魏琼, 陆浩, 吴子龙, 等. 基于刚度可调的气动位置伺服系统摩擦补偿控制[J]. 西北工业大学学报, 2024, 42(1): 138-148. |
| WEI Qiong, LU Hao, WU Zilong, et al. Friction Compensation Control of Pneumatic Position Servo System Based on the Adjustable Stiffness[J]. Journal of Northwestern Polytechnical University, 2024, 42(1): 138-148. | |
| [6] | 魏琼, 陆浩, 刘伟恒, 等. 双阀气动伺服系统的LuGre摩擦模型补偿研究[J]. 机械科学与技术, 2023, 42(10): 1609-1616. |
| WEI Qiong, LU Hao, LIU Weiheng, et al. Study on LuGre Model for Friction Compensation of Dual-valve Pneumatic Servo System[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(10): 1609-1616. | |
| [7] | REN H P, JIAO S S, LI J, et al. Adaptive Neural Network Control of Pneumatic Servo System Considering State Constraints[J]. Mechanical Systems and Signal Processing, 2022, 162: 107979. |
| [8] | ZHANG J, CUI C, GU S, et al. Trajectory Tracking Control of Pneumatic Servo System: a Variable Gain ADRC Approach[J]. IEEE Transactions on Cybernetics, 2022, 53(11) : 6977-6986. |
| [9] | 刘福才, 郭根旺. 气动变载荷加载系统的分数阶PID改进型自抗扰控制[J]. 振动与冲击, 2022, 41(15): 116-121. |
| LIU Fucai, GUO Genwang. Fractional Order PID Improved Active Disturbance Rejection Control for Pneumatic Variable Load Loading System[J]. Journal of Vibration and Shock, 2022, 41(15):116-121. | |
| [10] | 梁定坤, 孙宁, 吴易鸣, 等. 采用扰动估计的气动人工肌肉系统非线性控制[J]. 控制理论与应用,2019, 36(11): 1912-1919. |
| LIANG Dingkun, SUN Ning, WU Yiming, et al. Nonlinear Control for Pneumatic Artificial Muscle Systems with Disturbance Estimation [J]. Control Theory & Applications, 2019, 36(11): 1912-1919. | |
| [11] | 刘艳雄, 王根聚, 华林, 等. 采用自适应滑模变结构控制的精冲机双驱动协调控制系统[J]. 中国机械工程, 2021, 32(18): 2189-2196. |
| LIU Yanxiong, WANG Genju, HUA Lin, et al. Double-drive Coordinated Control Systems of Fine Stamping Machines Based on Adaptive Sliding Mode Variable Structure Control[J]. China Mechanical Engineering, 2021, 32(18): 2189-2196. | |
| [12] | 吕播阳, 孟庆鑫, 肖怀, 等. 基于改进三元模型的波纹管型气动软体驱动器神经网络滑模控制[J]. 中国机械工程, 2024, 35(8): 1414-1425. |
| Boyang LYU, MENG Qingxin, XIAO Huai, et al. Neural Network Sliding Mode Control of Bellows type Pneumatic Soft Actuators Based on Improved Ternary Model[J]. China Mechanical Engineering, 2024, 35(8): 1414-1425. | |
| [13] | HO C M, AHN K K. Extended State Observer-based Adaptive Neural Networks Backstepping Control for Pneumatic Active Suspension with Prescribed Performance Constraint[J].Applied Sciences, 2023, 13(3): 1705. |
| [14] | LI Q, DING B. Design of Backstepping Sliding Mode Control for a Polishing Robot Pneumatic System Based on the Extended State Observer[J]. Machines, 2023, 11(9): 904-927. |
| [15] | 郭新平, 汪成文, 刘华, 等. 基于扩张状态观测器的泵控电液伺服系统滑模控制[J]. 北京航空航天大学学报, 2020, 46(6): 1159-1168. |
| GUO Xinping, WANG Chengwen, LIU Hua, et al. Extended-state-observer Based Sliding Mode Control for Pump-controlled Electro-hydraulic Servo System [J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1159-1168. | |
| [16] | 张振, 郭一楠, 巩敦卫, 等. 基于改进扩展状态观测器的液压锚杆钻机滑模摆角控制[J]. 自动化学报, 2023, 49(6): 1256-1271. |
| ZHANG Zhen, GUO Yinan, GONG Dunwei, et al. Sliding Mode Swing Angle Control for a Hydraulic Roofbolter Based on Improved Extended State Observer [J]. Acta Automatica Sinica,2023,49(6): 1256-1271. | |
| [17] | ZHAO L, LI Z, LI H, et al. Backstepping Integral Sliding Mode Control for Pneumatic Manipulators Via Adaptive Extended State Observers[J]. ISA transactions, 2024, 144: 374-384. |
| [18] | 刘国海, 李持衡, 沈跃, 等. 基于滑模自抗扰的同步转向高地隙喷雾机姿态控制[J]. 农业机械学报, 2023, 54(3): 180-189. |
| LIU Guohai, LI Chiheng, SHEN Yue, et al. Sliding Mode Active Disturbance Rejection Control of Synchronous Steering High Clearance Sprayer[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(3): 180-189. | |
| [19] | LU K, TIAN H, ZHEN P, et al. Conversion Flight Control for Tiltrotor Aircraft via Active Disturbance Rejection Control[J]. Aerospace, 2022, 9(3): 155-173. |
| [20] | TRAN X B. Nonlinear Control of a Pneumatic Actuator Based on a Dynamic Friction Model[J]. Journal of Mechanical Engineering, 2021, 67(9) : 458-472. |
| [21] | WANG K, CHEN G, ZHANG T. Pump-controlled AGC Micro-displacement Position Control of Lithium Battery Pole Strip Mill Based on Friction Model[J]. Processes, 2023, 11(9) : 2587. |
| [22] | 王军晓, 闫小东, 徐建明. 基于扰动和摩擦补偿的柔性机械臂系统非奇异快速终端滑模控制[J]. 控制理论与应用, 2023, 40(7): 1199-1207. |
| WANG Junxiao, YAN Xiaodong, XU Jianming. Nonsingular Fast Terminal-sliding-mode Control for Flexible Manipulator System Based on Disturbance and Friction Compensation [J]. Control Theory & Applications, 2023, 40(7): 1199-1207. | |
| [23] | 赵天一, 贵献国, 乔岳, 等. 基于平滑GMS模型和改进扩张状态观测器的复合摩擦补偿[J]. 中国电机工程学报, 2024, 44(5): 1999-2009. |
| ZHAO Tianyi, GUI Xianguo, QIAO Yue, et al. Composite Friction Compensation Based on Smooth GMS Model and Improved Extended State Observer [J]. Proceedings of the CSEE, 2024, 44(5): 1999-2009. | |
| [24] | 张迪嘉, 高路平, 周少梁, 等. 高压气动压力伺服系统的鲁棒控制[J]. 中国机械工程, 2024, 35(7): 1141-1150. |
| ZHANG Dijia, GAO Luping, ZHOU Shaoliang, et al. Robust Control of High-pressure Pneumatic Pressure Servo Systems [J]. China Mechanical Engineering, 2024, 35(7): 1141-1150. | |
| [25] | 张斌. 自抗扰控制的气缸伺服系统定位研究[D].秦皇岛:燕山大学, 2018. |
| ZHANG Bin. The Positioning Study for a Cylinder Servo System via ADRC Approach[D]. Qinhuang-dao: Yanshan University, 2018. | |
| [26] | 叶浩楠. 基于遗传算法的非线性摩擦参数辨识研究[D].南京: 南京大学, 2013. |
| YE Haonan. Nonlinear Friction Parameters Idetification Research Based on Genetic Algorithm[D].Nanjing: Nanjing University, 2013. | |
| [27] | 吕南方,夏运霞,张兵,等. 光电跟踪系统非均匀受力摩擦补偿研究[J]. 激光技术,2024,48(4):455-462. |
| Nanfang LYU, XIA Yunxia, ZHANG Bing, et al. Research on Friction Compensation of Non-uniform Force in Photoelectirc Tracking System[J]. Laser Technology,2024,48(4):455-462. | |
| [28] | 史蒂芬, 侯润民, 顾晓辉, 等. 随动系统的新型非奇异快速终端滑模控制 [J]. 中国机械工程, 2022, 33(4): 413-420. |
| SHI Difen, HOU Runmin, GU Xiaohui, et al. Novel NFTSM Control for Servo Systems[J]. China Mechanical Engineering, 2022, 33(4): 413-420. | |
| [29] | CHEN W H, YANG J, GUO L, et al. Disturbance-observer-based Control and Related Methods:an Overview[J]. Transactions on Industrial Electronics, 2015, 63(2): 1083-1095. |
| [30] | LI Y, TAN P, LIU J, et al. A Super-twisting Extended State Observer for Nonlinear Systems [J]. Mathematics, 2022, 10(19): 3584. |
| [31] | 张祝新, 孙辉亮, 王立新, 等. 基于噪声抑制的电液位置伺服系统自抗扰控制方法[J]. 农业机械学报, 2024, 55(2): 450-458. |
| ZHANG Zhuxin, SUN Huiliang, WANG Lixin, et al. Active Disturbance Rejection Control of Electro-Hydraulic Position Servo System Based on Noise Suppression[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55(2): 450-458. | |
| [32] | 邱建琪, 留若宸. 永磁同步电机位置伺服系统改进自抗扰控制 [J]. 电机与控制学报, 2019, 23(11): 42-50. |
| QIU Jianqi, LIU Ruoche. Improved Active Disturbance Rejection Control for Permanent Magnet Synchronous Motor Position Servo Systemr [J]. Electric Machines and Control, 2019, 23(11): 42-50. | |
| [33] | 韩京清. 从PID技术到“自抗扰控制”技术 [J]. 控制工程, 2002(3): 13-18. |
| HAN Jingqing. From PID Technique to Active Disturbances Rejection Control Technique [J]. Control Engineering of China, 2002(3): 13-18. | |
| [34] | 李中奇, 张俊豪, 唐博伟. 高速列车精确停车的超扭曲非奇异终端滑模控制方法 [J]. 铁道学报, 2023, 45(12): 83-91. |
| LI Zhongqi, ZHANG Junhao, TANG Bowei. Super-twisting Nonsingular Terminal Sliding Mode Control Method for Accurate Stopping of High-speed Trains [J]. Journal of the China Railway Society, 2023, 45(12): 83-91. | |
| [35] | YANG F, ZHANG K, YU L. Adaptive Super-twisting Algorithm-based Nonsingular Terminal Sliding Mode Guidance Law [J]. Journal of Control Science and Engineering, 2020, 2020: 1058347. |
| [1] | JIN Hongyan, WANG Lei, ZHAO Ximei. Adaptive Nonlinear Sliding Mode Contour Control of Two-axis Direct Drive Servo Feed Systems Based on Friction Compensation [J]. China Mechanical Engineering, 2023, 34(11): 1335-1342. |
| [2] | NI Tao, XU Haiyuan, LI Dong, ZHANG Hongyan. Research on Dynamics Feedforward Compliance Control of 6-DOF Platforms [J]. China Mechanical Engineering, 2022, 33(06): 683-689. |
| [3] | CHEN Dongning, LIU Yidan, YAO Chengyu, JIANG Donglin, WANG Kexun, . Friction Compensation of Proportional Multiway Valve Based on Modified Viscous Friction LuGre Model [J]. China Mechanical Engineering, 2017, 28(01): 62-68. |
| [4] | LI Min, WANG Jia-Xu, XIAO Ke, HUANG Chao, XU Chao. Digital Robust Sliding Mode Control of Robot Manipulator with Dynamic Friction Block Compensation Using Fuzzy RBF Neural Network [J]. China Mechanical Engineering, 2012, 23(23): 2792-2796. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||