China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (10): 2249-2257.DOI: 10.3969/j.issn.1004-132X.2025.10.011
Xiaodong YAN1,2,3(
), Gongbo ZHOU1,2,3(
), Ping ZHOU1,2,3, Lianfeng HAN1,2,3, Qing LI1,2,3, Shuang CAO1,2,3
Received:2024-09-11
Online:2025-10-25
Published:2025-11-05
Contact:
Gongbo ZHOU
闫晓东1,2,3(
), 周公博1,2,3(
), 周坪1,2,3, 韩链锋1,2,3, 李庆1,2,3, 曹爽1,2,3
通讯作者:
周公博
作者简介:闫晓东,男,1995年生,博士后研究人员。研究方向为无线传感器网络、能量收集技术。E-mail:yanxiaodong@cumt.edu.cn基金资助:CLC Number:
Xiaodong YAN, Gongbo ZHOU, Ping ZHOU, Lianfeng HAN, Qing LI, Shuang CAO. Power Generation Performance of Hybrid Piezoelectric Vibrator Based on Rotational Magnetic Force-wind Induced Vibrations[J]. China Mechanical Engineering, 2025, 36(10): 2249-2257.
闫晓东, 周公博, 周坪, 韩链锋, 李庆, 曹爽. 基于旋转磁力-风致振动的混合式压电振子发电性能[J]. 中国机械工程, 2025, 36(10): 2249-2257.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.10.011
| 测试风速地点 | 平均风速 | 备注 |
|---|---|---|
| 大巷 | 2.0 m/s | |
| 副井井口 | 2.5 m/s | |
| 主运输巷道 | 1.8 m/s | 风管开口附近 |
| 综采工作面 | 3.5 m/s | 10个点的平均值 |
Tab.1 Actual wind speed test results at a Mine
| 测试风速地点 | 平均风速 | 备注 |
|---|---|---|
| 大巷 | 2.0 m/s | |
| 副井井口 | 2.5 m/s | |
| 主运输巷道 | 1.8 m/s | 风管开口附近 |
| 综采工作面 | 3.5 m/s | 10个点的平均值 |
| 参数 | 基板 | PZT-5H | 磁铁 | 质量块 | |
|---|---|---|---|---|---|
| 弹性模量/GPa | 110 | 60.6 | |||
| 密度/(kg·m-3) | 8300 | 7500 | 7500 | 7500 | |
| 压电振子1尺寸/mm | 长×宽×厚 | 100×20×0.2 | 60×20×0.2 | 10×10×5 | 10×10×40 |
| 压电振子2尺寸/mm | 长×宽×厚 | 180×40×0.2 | 60×40×0.2 | ||
Tab.2 Model parameters
| 参数 | 基板 | PZT-5H | 磁铁 | 质量块 | |
|---|---|---|---|---|---|
| 弹性模量/GPa | 110 | 60.6 | |||
| 密度/(kg·m-3) | 8300 | 7500 | 7500 | 7500 | |
| 压电振子1尺寸/mm | 长×宽×厚 | 100×20×0.2 | 60×20×0.2 | 10×10×5 | 10×10×40 |
| 压电振子2尺寸/mm | 长×宽×厚 | 180×40×0.2 | 60×40×0.2 | ||
| 长径比L/D1 | 发电功率/mW | 长径比L/D1 | 发电功率/mW |
|---|---|---|---|
| 1.4 | 0.0007 | 2.4 | 0.0220 |
| 1.6 | 0.0033 | 2.6 | 0.0320 |
| 1.8 | 0.1600 | 2.8 | 0.0180 |
| 2.0 | 0.2700 | 3.0 | 0.0030 |
| 2.2 | 0.2000 | 单一圆柱体 | 0.0005 |
Tab. 3 Generation power under different aspect ratios
| 长径比L/D1 | 发电功率/mW | 长径比L/D1 | 发电功率/mW |
|---|---|---|---|
| 1.4 | 0.0007 | 2.4 | 0.0220 |
| 1.6 | 0.0033 | 2.6 | 0.0320 |
| 1.8 | 0.1600 | 2.8 | 0.0180 |
| 2.0 | 0.2700 | 3.0 | 0.0030 |
| 2.2 | 0.2000 | 单一圆柱体 | 0.0005 |
| 方法 | 动力学现象 | 风速/(m·s-1) | 最大输出功率/ (mW) |
|---|---|---|---|
| 文献 [ | 驰振 | 4.2 | 0.0072 |
| 文献[ | 涡激振动 | 1.6 | 0.2100 |
无钝体的单一 风致振动式 | 涡激振动 | 3.5 | 0.0005 |
有钝体的单一 风致振动式 | 涡激振动 | 3.5 | 0.2700 |
旋转磁力- 风致振动混合式 | 磁致振动+ 涡激振动 | 3.5 | 0.7200 |
Tab.4 Comparison of power generation performance of different methods
| 方法 | 动力学现象 | 风速/(m·s-1) | 最大输出功率/ (mW) |
|---|---|---|---|
| 文献 [ | 驰振 | 4.2 | 0.0072 |
| 文献[ | 涡激振动 | 1.6 | 0.2100 |
无钝体的单一 风致振动式 | 涡激振动 | 3.5 | 0.0005 |
有钝体的单一 风致振动式 | 涡激振动 | 3.5 | 0.2700 |
旋转磁力- 风致振动混合式 | 磁致振动+ 涡激振动 | 3.5 | 0.7200 |
| [1] | 亓有超, 赵俊青, 张弛. 微纳振动能量收集器研究现状与展望[J]. 机械工程学报, 2020, 56(13):1-15. |
| QI Youchao, ZHAO Junqing, ZHANG Chi. Review and Prospect of Micro-nano Vibration Energy Harvesters[J]. Journal of Mechanical Engineering, 2020, 56(13):1-15. | |
| [2] | 姚丙盟, 刘志平, 李文锋. 基于双稳态的振动能量收集系统的设计[J].中国机械工程, 2015, 26(13):1736-1741. |
| YAO Bingmeng, LIU Zhiping, LI Wenfeng. Design of Vibration Energy Harvester Based on Bistability[J]. China Mechanical Engineering, 2015, 26(13):1736-1741. | |
| [3] | 赵兴强, 王军雷, 蔡骏, 等. 基于风致振动效应的微型风能收集器研究现状[J]. 振动与冲击, 2017, 36(16):106-112. |
| ZHAO Xingqiang, WANG Junlei, CAI Jun, et al. A Review on Micro Wind Energy Harvesters Based Wind Induced Vibration[J]. Journal of Vibration and Shock, 2017, 36(16):106-112. | |
| [4] | 李支援, 吕文博, 马小青, 等. 一种磁力滑动式翼型颤振能量俘获器[J]. 力学学报, 2023, 55(10):2146-2155. |
| LI Zhiyuan, Wenbo LYU, MA Xiaoqing, et al. A Magnetic Sliding Airfoil Flutter Energy Harvester[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10):2146-2155. | |
| [5] | 闫晓东, 周公博, 徐懋, 等. 宽频自调谐压电振子发电性能研究[J]. 振动工程学报, 2023, 36(6):1647-1656. |
| YAN Xiaodong, ZHOU Gongbo, XU Mao, et al. Power Generation Performance Analysis of Broadband Self-tuning Piezoelectric Vibrator[J]. Journal of Vibration Engineering, 2023, 36(6):1647-1656. | |
| [6] | 闫晓东, 周公博. 中间梁方式下压电式能量采集器发电性能研究[J]. 电子学报, 2022, 50(2):404-414. |
| YAN Xiaodong, ZHOU Gongbo. Study on Power Generation Performance of Piezoelectric Energy Harvester under Intermediate Beam Fixed Mode[J]. Acta Electronica Sinica, 2022, 50(2):404-414. | |
| [7] | 黄浩博, 曹迪, 周志勇, 等. 基于涡激振动的压电风能收集器研究进展[J]. 力学学报, 2023, 55(10):2132-2145. |
| HUANG Haobo, CAO Di, ZHOU Zhiyong, et al. Research Progress of Piezoelectric Wind Energy Harvesters Based on Vortex-Induced Vibration[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(10):2132-2145. | |
| [8] | 练继建, 燕翔, 刘昉, 等. 正方形截面振子在不同来流方向的单自由度流致振动特性研究[J]. 振动与冲击, 2017, 36(15):29-35. |
| LIAN Jijian, YAN Xiang, LIU Fang, et al. Flow Induced Vibration Characteristics of a Single-DOF Square Cylinder at Different Incident Angles[J]. Journal of Vibration and Shock, 2017, 36(15):29-35. | |
| [9] | WANG J L, ZHANG C Y, YURCHENKO D, et al. Usefulness of Inclined Circular Cylinders for Designing Ultra-wide Bandwidth Piezoelectric Energy Harvesters:Experiments and Computational Investigations[J]. Energy, 2022, 239:122203. |
| [10] | WANG J L, SUN S K, HU G B, et al. Exploring the Potential Benefits of Using Metasurface for Galloping Energy Harvesting[J]. Energy Conversion and Management, 2021, 243:114414. |
| [11] | WANG J L, HAN C Y, YURCHENKO D, et al. Energy Concentration Pipe Based on Passive Jet Control for Enhancing Flow Induced Vibration Energy Harvesting[J]. Energy Conversion and Management, 2024, 319:118948. |
| [12] | SONG T, DING L, YANG L, et al. Comparison of Machine Learning Models for Performance Evaluation of Wind-induced Vibration Piezoelectric Energy Harvester with Fin-shaped Attachments[J]. Ocean Engineering, 2023, 280:114630. |
| [13] | 于慧慧, 李莉, 王永耀, 等. 基于涡致振动的压电能量收集阵列的仿真与实验[J]. 压电与声光, 2022, 44(1):77-84. |
| YU Huihui, LI Li, WANG Yongyao, et al. Simulation and Experiment on Piezoelectric Energy Harvester Array Based on Vortex-induced Vibration[J]. Piezoelectrics & Acoustooptics, 2022, 44(1):77-84. | |
| [14] | HOBBS W B. Piezoelectric Energy Harvesting:Vortex Induced Vibrations in Plants, Soap Films, and Arrays of Cylinders[D]. Atlanta:Georgia Institute of Technology, 2010. |
| [15] | WANG G T, LUO L J, ZHAO Q L, et al. A Dual-cylinder Piezoelectric Energy Harvester Using Wind Energy[J]. Ferroelectrics Letters Section, 2023, 50(4/6):150-161. |
| [16] | TANG B W, FAN X T, WANG J W, et al. Energy Harvesting from Flow-induced Vibrations Enhanced by Meta-surface Structure under Elastic Interference[J]. International Journal of Mechanical Sciences, 2022, 236:107749. |
| [17] | KAN J W, LIAO W L, WANG J, et al. Enhanced Piezoelectric Wind-induced Vibration Energy Harvester via the Interplay between Cylindrical Shell and Diamond-shaped Baffle[J]. Nano Energy, 2021, 89:106466. |
| [18] | HU G, WANG J L, SU Z, et al. Performance Evaluation of Twin Piezoelectric Wind Energy Harvesters under Mutual Interference[J]. Applied Physics Letters, 2019, 115(7):073901. |
| [19] | MENG J P, FU X W, YANG C Q, et al. Design and Simulation Investigation of Piezoelectric Energy Harvester under Wake-induced Vibration Coupling Vortex-induced Vibration[J]. Ferroelectrics, 2021, 585(1):128-138. |
| [20] | MENG J P, YANG C Q, ZHANG H R, et al. Design and Experiment Investigation of a Percussive Piezoelectric Energy Harvester Scavenging on Wind Galloping Oscillation[J]. Ferroelectrics, 2021, 584(1):121-131. |
| [21] | HOU C W, SHAN X B, ZHANG L A, et al. Design and Modeling of a Magnetic-Coupling Monostable Piezoelectric Energy Harvester under Vortex-induced Vibration[J]. IEEE Access, 2020, 8:108913-108927. |
| [1] | ZHU Chuanjun1, LIANG Zeqi1, FU Qiang1, ZHANG Chaoyong2. Label Assignment Algorithm for Metal Defect Samples Based on Distance-awareness [J]. China Mechanical Engineering, 2024, 35(09): 1634-1641. |
| [2] | LI Shengbo, SONG Ye, QIU Yufan, FU Shengping, SHUTIN Denis, CHANG Jiawei, BAI Fengmin. Focusing Characteristics of High Voltage Electron Guns under Variable Electromagnetic and Beam Source Parameters [J]. China Mechanical Engineering, 2023, 34(15): 1789-1796. |
| [3] | ZHANG Yongxia, ZHANG Guangming, ZHOU Longjian, ZHOU Hefei, XU Quan, LAN Hongbo. High-performance Paper-based Electronic Fabricated by Electric-field-driven Jet Micro 3D Printing#br# [J]. China Mechanical Engineering, 2022, 33(10): 1244-1259. |
| [4] | HAO Rui, PENG Bei, ZHOW Wu. Research on Hysteresis Compensation Method of MEMS Piezoelectric Vibratory Platforms [J]. China Mechanical Engineering, 2021, 32(17): 2118-2124. |
| [5] | TONG Wenjun;WANG Minghuan;QIU Guozhi;XU Xuefeng. Analysis of Micro Texture and Friction Properties of Friction Coupling Surfaces Produced by AS-EMM [J]. China Mechanical Engineering, 2020, 31(11): 1331-1336. |
| [6] | Wang Rui, Chen Xuedong, Fan Zhichao. Time-domain Analysis of Wind-induced Fatigue Life for High-rising Column [J]. China Mechanical Engineering, 2015, 26(17): 2308-2314. |
| [7] | Peng Taijiang;Kan Junwu;Yang Zhigang;Cheng Guangming. Numerical Simulation and Experiments on Bending Vibration Characteristics of Circular Piezoelectric Vibrator [J]. J4, 2009, 20(16): 0-1895. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||