China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (8): 1842-1852.DOI: 10.3969/j.issn.1004-132X.2025.08.019
Zitong YUE, Yanting LI(), Yu ZHAO
Received:
2024-07-04
Online:
2025-08-25
Published:
2025-09-18
Contact:
Yanting LI
通讯作者:
李艳婷
作者简介:
岳子桐,男,2001年生,硕士研究生。研究方向为数据驱动的过程优化与监测。
基金资助:
CLC Number:
Zitong YUE, Yanting LI, Yu ZHAO. Condition Monitoring of Wind Turbines Based on Neural Networks and Robust Estimation[J]. China Mechanical Engineering, 2025, 36(8): 1842-1852.
岳子桐, 李艳婷, 赵宇. 基于神经网络和稳健估计的风电机组状态监测[J]. 中国机械工程, 2025, 36(8): 1842-1852.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.08.019
时间 | 瞬时风速/ (m·s-1) | 风向角/ ( | 齿轮箱油温/ | 有功功率/kW | 风机状态 |
---|---|---|---|---|---|
2019-02-02 09∶30∶00 | 7.71 | -4.31 | 57.3 | 1162 | 8 |
2019-02-02 09∶40∶00 | 10.72 | 14.09 | 57.7 | 1694 | 8 |
2019-02-02 09∶50∶00 | 9.57 | 6.56 | 57.9 | 1756 | 8 |
2019-02-02 10∶00∶00 | 9.16 | 0.05 | 58.5 | 2082 | 8 |
Tab.1 Display of part of SCADA operation data
时间 | 瞬时风速/ (m·s-1) | 风向角/ ( | 齿轮箱油温/ | 有功功率/kW | 风机状态 |
---|---|---|---|---|---|
2019-02-02 09∶30∶00 | 7.71 | -4.31 | 57.3 | 1162 | 8 |
2019-02-02 09∶40∶00 | 10.72 | 14.09 | 57.7 | 1694 | 8 |
2019-02-02 09∶50∶00 | 9.57 | 6.56 | 57.9 | 1756 | 8 |
2019-02-02 10∶00∶00 | 9.16 | 0.05 | 58.5 | 2082 | 8 |
序号 | 类型 | 核数 | 节点数 | 激活函数 | 失活率 |
---|---|---|---|---|---|
1 | Conv_1D | 32 | — | ReLU | — |
2 | MaxPooling_1D | — | — | — | — |
3 | Conv_1D | 64 | — | ReLU | — |
4 | MaxPooling_1D | — | — | — | — |
5 | Bidirectional_GRU | — | 128 | tanh | — |
6 | Bidirectional_GRU | — | 64 | tanh | — |
7 | Dropout | — | — | — | 0.3* |
Tab.2 Model parameters of CNN-BiGRU
序号 | 类型 | 核数 | 节点数 | 激活函数 | 失活率 |
---|---|---|---|---|---|
1 | Conv_1D | 32 | — | ReLU | — |
2 | MaxPooling_1D | — | — | — | — |
3 | Conv_1D | 64 | — | ReLU | — |
4 | MaxPooling_1D | — | — | — | — |
5 | Bidirectional_GRU | — | 128 | tanh | — |
6 | Bidirectional_GRU | — | 64 | tanh | — |
7 | Dropout | — | — | — | 0.3* |
待监测 变量 | 自变量 |
---|---|
齿轮箱油温(℃) | 风轮转速(r/min), 发电机转速(r/min), 30 s平均风速(m/s), 发电机定子U温度(℃), 发电机定子W温度(℃),电网A相电流(A), 电网B相电流(A), 低速轴承温度(℃), 发电机定子V温度(℃), 驱动端轴承温度(℃), 电网C相电流(A), 有功功率(kW), 高速轴承温度(℃) |
低速轴承温度(℃) | 风轮转速(r/min), 发电机转速(r/min), 瞬时风速(m/s), 30 s平均风速(m/s), 电网A相电流(A), 电网B相电流(A), 电网C相电流(A), 有功功率(kW), 高速轴承温度(℃), 齿轮箱油温(℃) |
高速轴承温度(℃) | 风轮转速(r/min), 发电机转速(r/min), 瞬时风速(m/s), 30 s平均风速(m/s), 发电机定子U温度(℃), 发电机定子W温度(℃), 电网A相电流(A), 电网B相电流(A), 低速轴承温度(℃), 发电机定子V温度(℃), 驱动端轴承温度(℃),电网C相电流(A),有功功率(kW),齿轮箱油温(℃) |
发电机定子U温度(℃) | 风轮转速(r/min), 发电机转速(r/min), 瞬时风速(m/s), 30 s平均风速(m/s), 发电机定子W温度(℃), 电网A相电流(A), 电网B相电流(A), 低速轴承温度(℃), 发电机定子V温度(℃), 驱动端轴承温度(℃), 电网C相电流(A), 有功功率(kW), 高速轴承温度(℃), 齿轮箱油温(℃) |
Tab.3 Filtered independent-monitored variables
待监测 变量 | 自变量 |
---|---|
齿轮箱油温(℃) | 风轮转速(r/min), 发电机转速(r/min), 30 s平均风速(m/s), 发电机定子U温度(℃), 发电机定子W温度(℃),电网A相电流(A), 电网B相电流(A), 低速轴承温度(℃), 发电机定子V温度(℃), 驱动端轴承温度(℃), 电网C相电流(A), 有功功率(kW), 高速轴承温度(℃) |
低速轴承温度(℃) | 风轮转速(r/min), 发电机转速(r/min), 瞬时风速(m/s), 30 s平均风速(m/s), 电网A相电流(A), 电网B相电流(A), 电网C相电流(A), 有功功率(kW), 高速轴承温度(℃), 齿轮箱油温(℃) |
高速轴承温度(℃) | 风轮转速(r/min), 发电机转速(r/min), 瞬时风速(m/s), 30 s平均风速(m/s), 发电机定子U温度(℃), 发电机定子W温度(℃), 电网A相电流(A), 电网B相电流(A), 低速轴承温度(℃), 发电机定子V温度(℃), 驱动端轴承温度(℃),电网C相电流(A),有功功率(kW),齿轮箱油温(℃) |
发电机定子U温度(℃) | 风轮转速(r/min), 发电机转速(r/min), 瞬时风速(m/s), 30 s平均风速(m/s), 发电机定子W温度(℃), 电网A相电流(A), 电网B相电流(A), 低速轴承温度(℃), 发电机定子V温度(℃), 驱动端轴承温度(℃), 电网C相电流(A), 有功功率(kW), 高速轴承温度(℃), 齿轮箱油温(℃) |
参数类型 | 取值 |
---|---|
种群数 | |
迭代轮次 | |
学习率下界 | |
学习率上界 | |
失活率下界 | |
失活率上界 | |
适应度函数 | MSE |
Tab.4 Algorithm parameters of COA
参数类型 | 取值 |
---|---|
种群数 | |
迭代轮次 | |
学习率下界 | |
学习率上界 | |
失活率下界 | |
失活率上界 | |
适应度函数 | MSE |
MAE | MSE | RMSE | MAPE | |
---|---|---|---|---|
CNN | 0.8058 | 1.3012 | 1.1407 | 1.6943 |
LSTM | 0.7656 | 1.1593 | 1.0767 | 1.6037 |
BiLSTM | 0.7571 | 1.1781 | 1.0854 | 1.5838 |
CNN-BiLSTM | 0.7551 | 1.2155 | 1.1025 | 1.5855 |
GRU | 0.7832 | 1.2290 | 1.1086 | 1.6434 |
BiGRU | 0.7773 | 1.2324 | 1.1101 | 1.6381 |
CNN-BiGRU | 0.7595 | 1.2448 | 1.1157 | 1.5842 |
GWO-CNN-BiLSTM | 0.7492 | 1.1774 | 1.0850 | 1.5719 |
GWO-CNN-BiGRU | 0.7403 | 1.1076 | 1.0524 | 1.5550 |
COA-CNN-BiLSTM | 0.7446 | 1.1695 | 1.0814 | 1.5621 |
COA⁃CNN⁃BiGRU | 0.7114 | 1.0579 | 1.0285 | 1.4909 |
Tab.5 Prediction performance comparison of gearbox oil temperature (℃)
MAE | MSE | RMSE | MAPE | |
---|---|---|---|---|
CNN | 0.8058 | 1.3012 | 1.1407 | 1.6943 |
LSTM | 0.7656 | 1.1593 | 1.0767 | 1.6037 |
BiLSTM | 0.7571 | 1.1781 | 1.0854 | 1.5838 |
CNN-BiLSTM | 0.7551 | 1.2155 | 1.1025 | 1.5855 |
GRU | 0.7832 | 1.2290 | 1.1086 | 1.6434 |
BiGRU | 0.7773 | 1.2324 | 1.1101 | 1.6381 |
CNN-BiGRU | 0.7595 | 1.2448 | 1.1157 | 1.5842 |
GWO-CNN-BiLSTM | 0.7492 | 1.1774 | 1.0850 | 1.5719 |
GWO-CNN-BiGRU | 0.7403 | 1.1076 | 1.0524 | 1.5550 |
COA-CNN-BiLSTM | 0.7446 | 1.1695 | 1.0814 | 1.5621 |
COA⁃CNN⁃BiGRU | 0.7114 | 1.0579 | 1.0285 | 1.4909 |
MAE | MSE | RMSE | MAPE | |
---|---|---|---|---|
CNN | 2.3623 | 10.183 | 3.1911 | 3.7260 |
LSTM | 2.2248 | 9.1503 | 3.0249 | 3.5262 |
BiLSTM | 2.2657 | 9.3039 | 3.0502 | 3.6017 |
CNN-BiLSTM | 2.1604 | 8.6160 | 2.9353 | 3.4208 |
GRU | 2.1654 | 8.6197 | 2.9359 | 3.4334 |
BiGRU | 2.1486 | 8.5568 | 2.9252 | 3.4026 |
CNN-BiGRU | 2.0974 | 8.3156 | 2.8836 | 3.3416 |
GWO-CNN-BiLSTM | 2.1037 | 8.1632 | 2.8571 | 3.3841 |
GWO-CNN-BiGRU | 2.0520 | 8.1309 | 2.8514 | 3.2694 |
COA-CNN-BiLSTM | 2.0281 | 7.8527 | 2.8022 | 3.1840 |
COA⁃CNN⁃BiGRU | 1.9875 | 7.6673 | 2.7689 | 3.1564 |
Tab.6 Prediction performance comparison of low-speed bearing temperature (℃)
MAE | MSE | RMSE | MAPE | |
---|---|---|---|---|
CNN | 2.3623 | 10.183 | 3.1911 | 3.7260 |
LSTM | 2.2248 | 9.1503 | 3.0249 | 3.5262 |
BiLSTM | 2.2657 | 9.3039 | 3.0502 | 3.6017 |
CNN-BiLSTM | 2.1604 | 8.6160 | 2.9353 | 3.4208 |
GRU | 2.1654 | 8.6197 | 2.9359 | 3.4334 |
BiGRU | 2.1486 | 8.5568 | 2.9252 | 3.4026 |
CNN-BiGRU | 2.0974 | 8.3156 | 2.8836 | 3.3416 |
GWO-CNN-BiLSTM | 2.1037 | 8.1632 | 2.8571 | 3.3841 |
GWO-CNN-BiGRU | 2.0520 | 8.1309 | 2.8514 | 3.2694 |
COA-CNN-BiLSTM | 2.0281 | 7.8527 | 2.8022 | 3.1840 |
COA⁃CNN⁃BiGRU | 1.9875 | 7.6673 | 2.7689 | 3.1564 |
MAE | MSE | RMSE | MAPE | |
---|---|---|---|---|
CNN | 1.2472 | 2.8931 | 1.7009 | 2.4006 |
LSTM | 1.2056 | 2.7627 | 1.6621 | 2.3321 |
BiLSTM | 1.1774 | 2.6469 | 1.6269 | 2.2689 |
CNN-BiLSTM | 1.1728 | 2.6049 | 1.6139 | 2.2595 |
GRU | 1.1832 | 2.7228 | 1.6500 | 2.2847 |
BiGRU | 1.1823 | 2.6435 | 1.6259 | 2.2781 |
CNN-BiGRU | 1.1805 | 2.6429 | 1.6257 | 2.2692 |
GWO-CNN-BiLSTM | 1.1602 | 2.5959 | 1.6111 | 2.2342 |
GWO-CNN-BiGRU | 1.1439 | 2.4995 | 1.5810 | 2.2039 |
COA-CNN-BiLSTM | 1.1437 | 2.4982 | 1.5805 | 2.2139 |
COA⁃CNN⁃BiGRU | 1.1283 | 2.4313 | 1.5592 | 2.1688 |
Tab.7 Prediction performance comparison of high-speed bearing temperature (℃)
MAE | MSE | RMSE | MAPE | |
---|---|---|---|---|
CNN | 1.2472 | 2.8931 | 1.7009 | 2.4006 |
LSTM | 1.2056 | 2.7627 | 1.6621 | 2.3321 |
BiLSTM | 1.1774 | 2.6469 | 1.6269 | 2.2689 |
CNN-BiLSTM | 1.1728 | 2.6049 | 1.6139 | 2.2595 |
GRU | 1.1832 | 2.7228 | 1.6500 | 2.2847 |
BiGRU | 1.1823 | 2.6435 | 1.6259 | 2.2781 |
CNN-BiGRU | 1.1805 | 2.6429 | 1.6257 | 2.2692 |
GWO-CNN-BiLSTM | 1.1602 | 2.5959 | 1.6111 | 2.2342 |
GWO-CNN-BiGRU | 1.1439 | 2.4995 | 1.5810 | 2.2039 |
COA-CNN-BiLSTM | 1.1437 | 2.4982 | 1.5805 | 2.2139 |
COA⁃CNN⁃BiGRU | 1.1283 | 2.4313 | 1.5592 | 2.1688 |
MAE | MSE | RMSE | MAPE | |
---|---|---|---|---|
CNN | 0.9806 | 5.5483 | 2.3554 | 1.7907 |
LSTM | 0.9157 | 5.1731 | 2.2744 | 1.6673 |
BiLSTM | 0.9055 | 5.0380 | 2.2445 | 1.6506 |
CNN-BiLSTM | 0.8988 | 4.8641 | 2.2054 | 1.6417 |
GRU | 0.9189 | 5.3419 | 2.3112 | 1.6709 |
BiGRU | 0.9252 | 5.2135 | 2.2833 | 1.6872 |
CNN-BiGRU | 0.8962 | 4.9486 | 2.2245 | 1.6421 |
GWO-CNN-BiLSTM | 0.8909 | 4.8665 | 2.2060 | 1.6330 |
GWO-CNN-BiGRU | 0.8742 | 4.8616 | 2.2049 | 1.5926 |
COA-CNN-BiLSTM | 0.8864 | 4.8550 | 2.2034 | 1.6232 |
COA⁃CNN⁃BiGRU | 0.8651 | 4.8637 | 2.2053 | 1.5776 |
Tab.8 Prediction performance comparison of generator stator U temperature (℃)
MAE | MSE | RMSE | MAPE | |
---|---|---|---|---|
CNN | 0.9806 | 5.5483 | 2.3554 | 1.7907 |
LSTM | 0.9157 | 5.1731 | 2.2744 | 1.6673 |
BiLSTM | 0.9055 | 5.0380 | 2.2445 | 1.6506 |
CNN-BiLSTM | 0.8988 | 4.8641 | 2.2054 | 1.6417 |
GRU | 0.9189 | 5.3419 | 2.3112 | 1.6709 |
BiGRU | 0.9252 | 5.2135 | 2.2833 | 1.6872 |
CNN-BiGRU | 0.8962 | 4.9486 | 2.2245 | 1.6421 |
GWO-CNN-BiLSTM | 0.8909 | 4.8665 | 2.2060 | 1.6330 |
GWO-CNN-BiGRU | 0.8742 | 4.8616 | 2.2049 | 1.5926 |
COA-CNN-BiLSTM | 0.8864 | 4.8550 | 2.2034 | 1.6232 |
COA⁃CNN⁃BiGRU | 0.8651 | 4.8637 | 2.2053 | 1.5776 |
MAE | MSE | RMSE | MAPE | |
---|---|---|---|---|
GWO-CNN-BiLSTM | 0.0831 | 0.4975 | 0.0979 | 0.0843 |
COA-CNN-BiLSTM | 0.1843 | 0.9251 | 0.1896 | 0.3243 |
GWO-CNN-BiGRU | 0.1232 | 0.5523 | 0.1598 | 0.2162 |
COA-CNN-BiGRU | 0.2413 | 1.1317 | 0.2876 | 0.4434 |
Tab.9 Comparison of evaluation metrics of heuristic algorithms for optimization
MAE | MSE | RMSE | MAPE | |
---|---|---|---|---|
GWO-CNN-BiLSTM | 0.0831 | 0.4975 | 0.0979 | 0.0843 |
COA-CNN-BiLSTM | 0.1843 | 0.9251 | 0.1896 | 0.3243 |
GWO-CNN-BiGRU | 0.1232 | 0.5523 | 0.1598 | 0.2162 |
COA-CNN-BiGRU | 0.2413 | 1.1317 | 0.2876 | 0.4434 |
[1] | Global Wind Energy Council. Global Wind Report 2024[EB/OL]. 2024-04-16. . |
[2] | 陈雪峰, 郭艳婕, 许才彬, 等. 风电装备故障诊断与健康监测研究综述[J]. 中国机械工程, 2020, 31(2): 175-189. |
CHEN Xuefeng, GUO Yanjie, XU Caibin, et al. Review of Fault Diagnosis and Health Monitoring for Wind Power Equipment[J]. China Mechanical Engineering, 2020, 31(2): 175-189. | |
[3] | GARCÍA MÁRQUEZ F P, TOBIAS A M, PINAR PÉREZ J M, et al. Condition Monitoring of Wind Turbines: Techniques and Methods[J]. Renewable Energy, 2012, 46: 169-178. |
[4] | 龙寰, 杨婷, 徐劭辉, 等. 基于数据驱动的风电机组状态监测与故障诊断技术综述[J]. 电力系统自动化, 2023, 47(23): 55-69. |
LONG Huan, YANG Ting, XU Shaohui, et al. Review of Data-driven Condition Monitoring and Fault Diagnosis Technologies for Wind Turbines[J]. Automation of Electric Power Systems, 2023, 47(23): 55-69. | |
[5] | QIAO Wei, LU Dingguo. A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis: Part I: Components and Subsystems[J]. IEEE Transactions on Industrial Electronics, 2015, 62(10): 6536-6545. |
[6] | KONG Ziqian, TANG Baoping, DENG Lei, et al. Condition Monitoring of Wind Turbines Based on Spatio-temporal Fusion of SCADA Data by Convolutional Neural Networks and Gated Recurrent Units[J]. Renewable Energy, 2020, 146: 760-768. |
[7] | XIANG Ling, WANG Penghe, YANG Xin, et al. Fault Detection of Wind Turbine Based on SCADA Data Analysis Using CNN and LSTM with Attention Mechanism[J]. Measurement, 2021, 175: 109094. |
[8] | LIU Guanglun, SI Jianlong, MENG Wenchao, et al. Wind Turbine Fault Detection with Multimodule Feature Extraction Network and Adaptive Strategy[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 72: 3504613. |
[9] | 杨博, 胡袁炜骥, 郭正勋, 等. 基于人工蜂群算法的温差发电阵列最优重构方法[J]. 上海交通大学学报, 2024, 58(1): 111-126. |
YANG Bo, HU Yuanweiji, GUO Zhengxun, et al. Optimal Reconfiguration Method for Thermoelectric Power Array Based on Artificial Bee Colony Algorithm[J]. Journal of Shanghai Jiao Tong University, 2024, 58(1): 111-126. | |
[10] | 李芬, 孙凌, 王亚维, 等. 基于CEEMDAN-GSA-LSTM和SVR的光伏功率短期区间预测[J]. 上海交通大学学报, 2024, 58(6): 806-818. |
LI Fen, SUN Ling, WANG Yawei, et al. Short-term Interval Forecasting of Photovoltaic Power Based on CEEMDAN-GSA-LSTM and SVR[J]. Journal of Shanghai Jiao Tong University, 2024, 58(6): 806-818. | |
[11] | TIKHAMARINE Y, SOUAG-GAMANE D, NAJAH AHMED A, et al. Improving Artificial Intelligence Models Accuracy for Monthly Streamflow Forecasting Using Grey Wolf Optimization (GWO) Algorithm[J]. Journal of Hydrology, 2020, 582: 124435. |
[12] | 刘会永, 张松, 李剑峰, 等. 采用改进CNN-BiLSTM模型的刀具磨损状态监测[J]. 中国机械工程, 2022, 33(16): 1940-1947. |
LIU Huiyong, ZHANG Song, LI Jianfeng, et al. Tool Wear Detection Based on Improved CNN-BiLSTM Model[J]. China Mechanical Engineering, 2022, 33(16): 1940-1947. | |
[13] | 赵宇, 李艳婷, 吴振宇, 等. 面向多模式多元未知分布的协方差过程监控[J]. 中国机械工程, 2023, 34(22): 2721-2736. |
ZHAO Yu, LI Yanting, WU Zhenyu, et al. Covariance Process Monitoring Scheme for Multi-mode Multivariate Unknown Distributions[J]. China Mechanical Engineering, 2023, 34(22): 2721-2736. | |
[14] | JALILIBAL Z, AMIRI A, CASTAGLIOLA P, et al. Monitoring the Coefficient of Variation: a Literature Review[J]. Computers & Industrial Engineering, 2021, 161: 107600. |
[15] | DEHGHANI M, MONTAZERI Z, TROJOVSKÁ E, et al. Coati Optimization Algorithm: a New Bio-inspired Metaheuristic Algorithm for Solving Optimization Problems[J]. Knowledge-Based Systems, 2023, 259: 110011. |
[16] | KALINA J, TICHAVSKÝ J. The Minimum Weighted Covariance Determinant Estimator for High-dimensional Data[J]. Advances in Data Analysis and Classification, 2022, 16(4): 977-999. |
[17] | BADIHI H, ZHANG Youmin, JIANG Bin, et al. A Comprehensive Review on Signal-based and Model-based Condition Monitoring of Wind Turbines: Fault Diagnosis and Lifetime Prognosis[J]. Proceedings of the IEEE, 2022, 110(6): 754-806. |
[18] | MALDONADO-CORREA J, MARTÍN-MARTÍNEZ S, ARTIGAO E, et al. Using SCADA Data for Wind Turbine Condition Monitoring: a Systematic Literature Review[J]. Energies, 2020, 13(12): 3132. |
[19] | WEI X D, CATH T Y, HERING A S. Monitoring Covariance in Multivariate Time Series: Comparing Machine Learning and Statistical Approaches[J]. Quality and Reliability Engineering International, 2024, 40(5): 2822-2840. |
[20] | ZHANG Yang, XIONG Ao, XIAO Yu, et al. A New Combination Method Based on Pearson Coefficient and Information Entropy for Multi-sensor Data Fusion[J]. Information and Software Technology, 2023, 161: 107248. |
[21] | SCHLECHTINGEN M, SANTOS I F, ACHICHE S. Wind Turbine Condition Monitoring Based on SCADA Data Using Normal Behavior Models. Part 1: System Description[J]. Applied Soft Computing, 2013, 13(1): 259-270. |
[22] | SEKHAR C, DAHIYA R. Robust Framework Based on Hybrid Deep Learning Approach for Short Term Load Forecasting of Building Electricity Demand[J]. Energy, 2023, 268: 126660. |
[23] | LEDOIT O, WOLF M. The Power of (Non-)Linear Shrinking: a Review and Guide to Covariance Matrix Estimation[J]. Journal of Financial Econometrics, 2022, 20(1): 187-218. |
[1] | ZHAO Yu, LI Yanting, WU Zhenyu, ZHOU Di, HU Jie. Covariance Process Monitoring Scheme for Multi-mode Multivariate Unknown Distributions [J]. China Mechanical Engineering, 2023, 34(22): 2721-2736,2757. |
[2] | ZHAO Yu, LI Yanting. Nonparametric Control Chart of Rank Test for Small Samples of High-dimensional Data [J]. China Mechanical Engineering, 2022, 33(09): 1104-1114. |
[3] | LIU Yongxing, TANG Xiaoqi, ZHONG Jinglong, ZHONG Zhenyu, ZHOU Xiangdong. Asymmetric Risk Injection Molding Product Size Prediction Model Based on LightGBM#br# [J]. China Mechanical Engineering, 2022, 33(08): 965-969. |
[4] | SUN Yun, JIANG Haifan, DING Guofu. Data Modeling,Integration and Storage Technology for Production Process Management and Control [J]. China Mechanical Engineering, 2022, 33(03): 356-365. |
[5] | LIU Siyuan1,2,3;HE Yue1,2;LI Xiaoming4;LU Mingli3;LU Zhengdian3. Multi-information Intensity Characteristic State Assessment Method of Hydraulic Pums Based on Fault Mechanism [J]. China Mechanical Engineering, 2019, 30(12): 1460-1465,1473. |
[6] | NING Jing;RAN Wei;CHONG Chuanjie;CHEN Chunjun. Recognition Methods of Small Amplitude Hunting in High-speed Trains Based on S-transform [J]. China Mechanical Engineering, 2019, 30(09): 1097-1102,1110. |
[7] | E Dongchen 1,2;ZHANG Lijie1,2 . Car Dumper Hydraulic System Fault Diagnosis Based on Multi-block MPCA [J]. China Mechanical Engineering, 2018, 29(08): 958-964. |
[8] | ZHANG Tao;TANG Dunbing;ZHANG Zequn;WEI Xin. Invasive 3D Real-time Supervision System for Digital Workshop [J]. China Mechanical Engineering, 2018, 29(08): 990-999. |
[9] | ZHANG Qiang, LIU Zhiheng, WANG Haijian, HUANG Chuanhui, Nguyen Viet Tuyen. On-line Monitoring of Pick's Wear Degrees Based on BP Neural Network [J]. China Mechanical Engineering, 2017, 28(09): 1062-1068. |
[10] | Liu Zhiqiang, Jiang Wanlu, Tan Wenzhen, Zhu Yong, . Fault Identification Method for Hydraulic Pumps Based on Multi-feature Fusion and Multiple Kernel Learning SVM [J]. China Mechanical Engineering, 2016, 27(24): 3355-3361. |
[11] | Wang Guangbin, Du Xiaoyang, Luo Jun, . Multi-scale Laplace Feature Mapping for Rotor Fault Feature Extraction [J]. China Mechanical Engineering, 2016, 27(20): 2791-2797. |
[12] | Liu Siyuan, Yang Mengxue, Wang Chuang, Zhang Wenwen. Morphological Filtering Method for Vibration Signals of Hydraulic Pump under Sinusoidal Variable Load Conditions [J]. China Mechanical Engineering, 2016, 27(19): 2557-2563. |
[13] | Zhang Qiang, Wang Haijian, Li Liying, Liu Zhiheng. Online Monitoring of Shearer's Pick Wear Based on ANFIS Fuzzy Information Fusion [J]. China Mechanical Engineering, 2016, 27(19): 2607-2614. |
[14] | . Iterative Adaptive Multiscale Morphological Filtering-based Fault Diagnosis for Rolling Bearings [J]. China Mechanical Engineering, 2015, 26(23): 3192-3199. |
[15] | An Xiangbi, Zhang Zhe, Chen Lei, Li Dawei, Wang Long. Experimental Study on Running-in Quality Monitoring Method of Remanufactured Engine [J]. China Mechanical Engineering, 2015, 26(4): 475-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||