China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (8): 1824-1831.DOI: 10.3969/j.issn.1004-132X.2025.08.017
Hongyan ZHANG1(), Haoyang ZHAO1, Huanfeng ZHAO2, Nianxuan LI1, Qinzheng SUN1, Lingtao HUANG1(
)
Received:
2024-07-29
Online:
2025-08-25
Published:
2025-09-18
Contact:
Lingtao HUANG
张红彦1(), 赵昊阳1, 赵焕峰2, 李念轩1, 孙钦政1, 黄玲涛1(
)
通讯作者:
黄玲涛
作者简介:
张红彦,女,1973年生,副教授、博士。研究方向为智能移动机器人。E-mail:zhanghy@jlu.edu.cn。
基金资助:
CLC Number:
Hongyan ZHANG, Haoyang ZHAO, Huanfeng ZHAO, Nianxuan LI, Qinzheng SUN, Lingtao HUANG. An Explicit Geometric Feature Matching LiDAR SLAM Method[J]. China Mechanical Engineering, 2025, 36(8): 1824-1831.
张红彦, 赵昊阳, 赵焕峰, 李念轩, 孙钦政, 黄玲涛. 一种显式几何特征匹配的激光雷达SLAM方法[J]. 中国机械工程, 2025, 36(8): 1824-1831.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.08.017
序列名称 | 场景 | 帧数 | 难度 | 时长/s | 长度/m |
---|---|---|---|---|---|
序列1 | 方形庭院 | 1991 | 简单 | 198 | 246.7 |
序列2 | 方形庭院 | 1910 | 中等 | 190 | 260.4 |
序列3 | 环形走廊 | 2788 | 简单 | 190 | 428.8 |
序列4 | 数学研究所 | 2160 | 简单 | 216 | 263.6 |
序列5 | 数学研究所 | 1770 | 中等 | 176 | 176.9 |
序列6 | 地下矿洞 | 1412 | 简单 | 141 | 162.5 |
序列7 | 地下矿洞 | 1487 | 中等 | 148 | 174.1 |
Tab.1 Newer college dataset sequence information
序列名称 | 场景 | 帧数 | 难度 | 时长/s | 长度/m |
---|---|---|---|---|---|
序列1 | 方形庭院 | 1991 | 简单 | 198 | 246.7 |
序列2 | 方形庭院 | 1910 | 中等 | 190 | 260.4 |
序列3 | 环形走廊 | 2788 | 简单 | 190 | 428.8 |
序列4 | 数学研究所 | 2160 | 简单 | 216 | 263.6 |
序列5 | 数学研究所 | 1770 | 中等 | 176 | 176.9 |
序列6 | 地下矿洞 | 1412 | 简单 | 141 | 162.5 |
序列7 | 地下矿洞 | 1487 | 中等 | 148 | 174.1 |
方法 | 序列1 | 序列2 | 序列3 | 序列4 | 序列5 | 序列6 | 序列7 | 误差均值 |
---|---|---|---|---|---|---|---|---|
A-LOAM | 0.0856 | 0.4034 | 0.2639 | 0.0863 | 0.8257 | 0.1451 | 0.1935 | 0.2862 |
LeGO-LOAM | 0.0929 | 0.5453 | 0.1865 | 0.1303 | 0.4315 | 0.1081 | 0.1311 | 0.2322 |
LL-LO | 0.1139 | 0.3569 | 0.2942 | 0.1522 | 0.3162 | 0.1255 | 0.1629 | 0.2174 |
LP-LO | 0.1068 | 0.3847 | 0.1742 | 0.1182 | 0.2835 | 0.1138 | 0.1497 | 0.1901 |
LPL-LO | 0.0888 | 0.2912 | 0.1224 | 0.0804 | 0.2617 | 0.0919 | 0.1244 | 0.1515 |
LPL-SLAM | 0.0865 | 0.2891 | 0.1027 | 0.0685 | 0.2388 | 0.0683 | 0.0935 | 0.1353 |
Tab.2 Absolute trajectory translation error
方法 | 序列1 | 序列2 | 序列3 | 序列4 | 序列5 | 序列6 | 序列7 | 误差均值 |
---|---|---|---|---|---|---|---|---|
A-LOAM | 0.0856 | 0.4034 | 0.2639 | 0.0863 | 0.8257 | 0.1451 | 0.1935 | 0.2862 |
LeGO-LOAM | 0.0929 | 0.5453 | 0.1865 | 0.1303 | 0.4315 | 0.1081 | 0.1311 | 0.2322 |
LL-LO | 0.1139 | 0.3569 | 0.2942 | 0.1522 | 0.3162 | 0.1255 | 0.1629 | 0.2174 |
LP-LO | 0.1068 | 0.3847 | 0.1742 | 0.1182 | 0.2835 | 0.1138 | 0.1497 | 0.1901 |
LPL-LO | 0.0888 | 0.2912 | 0.1224 | 0.0804 | 0.2617 | 0.0919 | 0.1244 | 0.1515 |
LPL-SLAM | 0.0865 | 0.2891 | 0.1027 | 0.0685 | 0.2388 | 0.0683 | 0.0935 | 0.1353 |
方法 | 序列1 | 序列2 | 序列3 | 序列4 | 序列5 | 序列6 | 序列7 | 平均误差 |
---|---|---|---|---|---|---|---|---|
A-LOAM | 1.3262 | 2.1683 | 1.8402 | 0.6375 | 3.9587 | 2.1558 | 2.6240 | 2.1015 |
LeGO-LOAM | 1.3705 | 2.3082 | 1.9917 | 0.8802 | 3.3395 | 2.3710 | 2.3344 | 2.0851 |
LL-LO | 2.1462 | 2.3851 | 2.3518 | 0.9573 | 3.6842 | 2.3568 | 2.5713 | 2.3504 |
LP-LO | 1.7438 | 2.4692 | 2.1566 | 0.8359 | 3.1183 | 2.1366 | 2.1724 | 2.0904 |
LPL-LO | 1.3405 | 2.2011 | 1.6433 | 0.5451 | 2.9053 | 1.9088 | 2.1230 | 1.8096 |
LPL-SLAM | 1.2309 | 2.1816 | 1.5943 | 0.5553 | 2.8719 | 1.9140 | 2.0116 | 1.7656 |
Tab.3 Absolute trajectory angular error
方法 | 序列1 | 序列2 | 序列3 | 序列4 | 序列5 | 序列6 | 序列7 | 平均误差 |
---|---|---|---|---|---|---|---|---|
A-LOAM | 1.3262 | 2.1683 | 1.8402 | 0.6375 | 3.9587 | 2.1558 | 2.6240 | 2.1015 |
LeGO-LOAM | 1.3705 | 2.3082 | 1.9917 | 0.8802 | 3.3395 | 2.3710 | 2.3344 | 2.0851 |
LL-LO | 2.1462 | 2.3851 | 2.3518 | 0.9573 | 3.6842 | 2.3568 | 2.5713 | 2.3504 |
LP-LO | 1.7438 | 2.4692 | 2.1566 | 0.8359 | 3.1183 | 2.1366 | 2.1724 | 2.0904 |
LPL-LO | 1.3405 | 2.2011 | 1.6433 | 0.5451 | 2.9053 | 1.9088 | 2.1230 | 1.8096 |
LPL-SLAM | 1.2309 | 2.1816 | 1.5943 | 0.5553 | 2.8719 | 1.9140 | 2.0116 | 1.7656 |
序列名称 | 场景 | 帧数 | 时长/s | 长度/m |
---|---|---|---|---|
序列1 | 机械馆 | 3422 | 343 | 386.4 |
序列2 | 机械馆 | 2904 | 291 | 321.7 |
序列3 | 体育馆 | 4284 | 429 | 606.4 |
Tab.4 Scene diagram of a custom dataset
序列名称 | 场景 | 帧数 | 时长/s | 长度/m |
---|---|---|---|---|
序列1 | 机械馆 | 3422 | 343 | 386.4 |
序列2 | 机械馆 | 2904 | 291 | 321.7 |
序列3 | 体育馆 | 4284 | 429 | 606.4 |
序列名称 | A-LOAM | LeGO-LOAM | LPL-LO | LPL-SLAM |
---|---|---|---|---|
序列1 | 0.131 m/2.146° | 0.245 m/2.436° | 0.104 m/1.708° | 0.075 m/1.485° |
序列2 | 0.096 m/2.348° | 0.075 m/2.341° | 0.091 m/1.522° | 0.062 m/1.379° |
序列3 | 17.43 m/5.269° | 0.535 m/2.571° | 0.205 m/2.675° | 0.121 m/1.841° |
Tab.5 Relative translation/rotation error
序列名称 | A-LOAM | LeGO-LOAM | LPL-LO | LPL-SLAM |
---|---|---|---|---|
序列1 | 0.131 m/2.146° | 0.245 m/2.436° | 0.104 m/1.708° | 0.075 m/1.485° |
序列2 | 0.096 m/2.348° | 0.075 m/2.341° | 0.091 m/1.522° | 0.062 m/1.379° |
序列3 | 17.43 m/5.269° | 0.535 m/2.571° | 0.205 m/2.675° | 0.121 m/1.841° |
序列名称 | 特征提取 | 位姿优化 | 局部优化 | 全局优化 |
---|---|---|---|---|
LPL-SLAM/Newer College Dataset 序列 1 | 24.07 | 20.67 | 19.44 | 88.53 |
LPL-SLAM/校园数据集 序列 1 | 17.51 | 14.97 | 26.02 | 109.6 |
Tab.6 Runtime of each module
序列名称 | 特征提取 | 位姿优化 | 局部优化 | 全局优化 |
---|---|---|---|---|
LPL-SLAM/Newer College Dataset 序列 1 | 24.07 | 20.67 | 19.44 | 88.53 |
LPL-SLAM/校园数据集 序列 1 | 17.51 | 14.97 | 26.02 | 109.6 |
序列名称 | 局部优化 |
---|---|
LPL-SLAM/Newer CollegeDataset 序列1 | 19.44 |
LPL-SLAM/校园数据集 序列1 | 26.02 |
A-LOAM/Newer College Dataset 序列1 | 10.27 |
A-LOAM/校园数据集 序列1 | 11.98 |
Tab.7 Local optimization runtime
序列名称 | 局部优化 |
---|---|
LPL-SLAM/Newer CollegeDataset 序列1 | 19.44 |
LPL-SLAM/校园数据集 序列1 | 26.02 |
A-LOAM/Newer College Dataset 序列1 | 10.27 |
A-LOAM/校园数据集 序列1 | 11.98 |
[1] | GALVEZ-LÓPEZ D, TARDOS J D. Bags of Binary Words for Fast Place Recognition in Image Sequences[J]. IEEE Transactions on Robotics, 2012, 28(5):1188-1197. |
[2] | RIBEIRO M I. Kalman and Extended Kalman Filters: Concept, Derivation and Properties[J]. Institute for Systems and Robotics, 2004, 43(46):3736-3741. |
[3] | MURPHY K, RUSSELL S. Rao-blackwellised Particle Filtering for Dynamic Bayesian Networks[M]∥Sequential Monte Carlo Methods in Practice. New York: Springer New York, 2001:499-515. |
[4] | THRUN S. Probabilistic Robotics[J]. Communications of the ACM, 2002, 45(3):52-57. |
[5] | OLSON E B. Real-time Correlative Scan Matching[C]∥2009 IEEE International Conference on Robotics and Automation. Kobe, 2009:4387-4393. |
[6] | ZHANG Ji, SINGH S. LOAM:Lidar Odometry and Mapping in Real-time[C]∥Robotics:Science and Systems. Berkeley, 2014:1-9. |
[7] | SHAN Tixiao, ENGLOT B. LeGO-LOAM:Lightweight and Ground-Optimized Lidar Odometry and Mapping on Variable Terrain[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, 2018:4758-4765. |
[8] | WANG Han, WANG Chen, CHEN Chunlin, et al. F-LOAM:Fast LiDAR Odometry and Mapping[C]∥2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Prague, 2021:4390-4396. |
[9] | PAN Yue, XIAO Pengchuan, HE Yujie, et al. MULLS: Versatile LiDAR SLAM via Multi-metric Linear Least Square[C]∥2021 IEEE International Conference on Robotics and Automation (ICRA). Xi'an, 2021:11633-11640. |
[10] | YANG Heng, SHI Jingnan, CARLONE L. TEASER:Fast and Certifiable Point Cloud Registration[J]. IEEE Transactions on Robotics, 2021, 37(2):314-333. |
[11] | SÜNDERHAUF N, PROTZEL P. Towards a Robust Back-end for Pose Graph SLAM[C]∥2012 IEEE International Conference on Robotics and Automation. St Paul, 2012:1254-1261. |
[12] | WANG Han, WANG Chen, XIE Lihua. Intensity-SLAM:Intensity Assisted Localization and Mapping for Large Scale Environment[J]. IEEE Robotics and Automation Letters, 2021, 6(2):1715-1721. |
[13] | WOLD S, ESBENSEN K, GELADI P. Principal Component Analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(1/2/3):37-52. |
[14] | BEHLEY J, STACHNISS C. Efficient Surfel-based SLAM Using 3D Laser Range Data in Urban Environments[C]∥Robotics: Science and Systems. Pittsburgh, 2018:46954808. |
[15] | FENG Chen, TAGUCHI Y, KAMAT V R. Fast Plane Extraction in Organized Point Clouds Using Agglomerative Hierarchical Clustering[C]∥2014 IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, 2014:6218-6225. |
[16] | GAO Haiming, ZHANG Xuebo, FANG Yongchun, et al. A Line Segment Extraction Algorithm Using Laser Data Based on Seeded Region Growing[J]. International Journal of Advanced Robotic Systems, 2018, 15:1729881418755245. |
[17] | ZUO Xingxing, XIE Xiaojia, LIU Yong, et al. Robust Visual SLAM with Point and Line Features[C]∥2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver, 2017:1775-1782. |
[18] | GENEVA P, ECKENHOFF K, YANG Yulin, et al. Lips:LiDAR-inertial 3D Plane Slam[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid, 2018:123-130. |
[19] | ZHANG L, CAMURRI M, WISTH D, et al. Multi-camera LiDAR Inertial Extension to the Newer College Dataset[M]∥arXiv Preprint, 2022. |
[20] | LIU Zheng, LI Haotian, YUAN Chongjian, et al. Voxel-SLAM:a Complete, Accurate, and Versatile LiDAR-Inertial SLAM System [EB/OL]. arXiv:2410.08935, 2024-10-11[2024-10-20]. . |
[21] | XU Ziheng, LI Qingfeng, CHEN Chen, et al. GLC-SLAM:Gaussian Splatting SLAM with Efficient Loop Closure [EB/OL]. arXiv:2409.10982, 2024-09-17[2024-10-20]. . |
[1] | TENG Jiapeng, WU Guoqi. Feature Extraction Method for Seawater Pump Excitation Sources Based on SOA-VMD-ICA [J]. China Mechanical Engineering, 2024, 35(08): 1373-1380. |
[2] | GAO Xinqin, YANG Xueqi, ZHENG Haiyang. Residual Life Prediction Method of Belt Conveyors Based on MDT Learning [J]. China Mechanical Engineering, 2024, 35(08): 1435-1448. |
[3] | GE Jimin1, DENG Zhaohui2, WANG Shuixian1, ZHUO Rongjin1, LIU Wei1, Chen Xi3. Automated Grinding System and Method for Robotic Weld Seams Based on Point Cloud [J]. China Mechanical Engineering, 2024, 35(07): 1253-1262,1268. |
[4] | MEI Jie, QIN Jiarui, CHEN Dingfang, CHEN Kun, . SLAM-based Underwater Image Enhanced Visual 3D Reconstruction Method [J]. China Mechanical Engineering, 2024, 35(02): 268-279. |
[5] | JI Yongjian, YAO Licheng, . Research on Self-adaptive Chatter Recognition Method for Robotic Milling [J]. China Mechanical Engineering, 2023, 34(18): 2165-2176. |
[6] | ZHENG Jinde, CHEN Yan, TONG Jinyu, PAN Haiyang. RGCMvMRDE and Its Applications in Rolling Bearing Fault Diagnosis [J]. China Mechanical Engineering, 2023, 34(11): 1315-1325. |
[7] | LIU Xiaofeng, ZHANG Tianyu, ZHANG Chunbing, BO Lin. Location Imaging of Composite Plate Damage Based on Cross Recurrence Rate [J]. China Mechanical Engineering, 2023, 34(08): 940-947. |
[8] | ZHAO Jing, YANG Shaopu, LI Qiang, LIU Yongqiang, . A New Transfer Learning Method with Residual Attention and Its Applications on Rolling Bearing Fault Diagnosis [J]. China Mechanical Engineering, 2023, 34(03): 332-343. |
[9] | ZHANG Kang, TIAN Zeyu, CHEN Xiangmin, LIAO Lida, WU Jiateng. Application of MMD in Gear Fault Feature Extraction under Variable Rotating Speed Working Conditions [J]. China Mechanical Engineering, 2022, 33(20): 2483-2491. |
[10] | CHEN Dongmei, ZHAO Siheng, WEI Chengyin, CHEN Yajie. Research and Applications of Condition Monitoring and Predictive Maintenance of Marine Diesel Engines [J]. China Mechanical Engineering, 2022, 33(10): 1162-1168. |
[11] | JIANG Jiawei, HU Yihuai, FANG Yunhu, ZHANG Chen, RUI Xiaosong, WANG Meng. Fault Diagnosis Method of Marine Fans Based on MTAD and Fuzzy Entropy [J]. China Mechanical Engineering, 2022, 33(10): 1178-1188. |
[12] | ZHANG Long, CAI Binghuan, XIONG Guoliang, WANG Chaobing, HU Junfeng. Multi-stage Noise Reduction Method with ESMK for Adaptive Feature Extraction of Rolling Bearings [J]. China Mechanical Engineering, 2021, 32(24): 2950-2959. |
[13] | ZHAO Zhihong, LI Lehao, YANG Shaopu, LI Qing. A Frequency Domain Feature Extraction Auto-encoder and Its Applications on Fault Diagnosis [J]. China Mechanical Engineering, 2021, 32(20): 2468-2474. |
[14] | XU Peng, FANG Zhou, WANG Ping, GENG Ming, XU Yong. Quantitative Evaluation Method of Defects Based on Transient Characteristics of PMFL [J]. China Mechanical Engineering, 2021, 32(07): 860-866,881. |
[15] | JIANG Zhinong1;WANG Zijia1;ZHANG Jinjie2;Huang Yifei3;MAO Zhiwei2. Fault Diagnosis Method of EDG in Nuclear Power Plants Based on Energy Operator Gradient Neighborhood Feature Extraction [J]. China Mechanical Engineering, 2021, 32(05): 617-623. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||