1.College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016
2.Tencent Robotics X Lab,Tencent Technology(Shenzhen) Co.,Ltd.,Shenzhen,Guangdong,518000
[1]瞿畅, 吴炳, 陈厚军, 等. 体感控制的上肢外骨骼镜像康复机器人系统[J]. 中国机械工程, 2018, 29(20):2484-2489.
QU Chang, WU Bing, CHEN Houjun, et al. Upper-limb Exoskeletal Mirror Rehabilitation Robot Systems Based on Motion Sensing Control[J]. China Mechanical Engineering, 2018, 29(20):2484-2489.
[2]沈惠平, 杨梁杰, 邓嘉鸣, 等. 用于肩关节康复训练的单输入三转动输出并联机构及其运动学设计[J]. 中国机械工程, 2015, 26(22):2983-2988.
SHEN Huiping, YANG Liangjie, DENG Jiaming, et al. A One-input Three-rotation Output Parallel Mechanism and Its Kinematics Design Used for Shoulder Rehabilitation[J]. China Mechanical Engineering, 2015, 26(22):2983-2988.
[3]王杰, 管声启, 夏齐霄. 手指康复外骨骼机器人的结构优化设计[J]. 中国机械工程, 2018, 29(2):224-229.
WANG Jie, GUAN Shengqi, XIA Qixiao. Struc-tural Design of Finger Rehabilitation Exoskeleton Robots[J]. China Mechanical Engineering, 2018, 29(2):224-229.
[4]KELLER U, VAN H, VERENA K M, et al. ChARMin:the First Actuated Exoskeleton Robot for Pediatric Arm Rehabilitation[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5):2201-2213.
[5]KI J, LEE G, HEIMGARTNER R, et al. Reducing the Metabolic Rate of Walking and Running with a Versatile, Portable Exosuit[J]. Science, 2019, 365(6454):668-672.
[6]YU S, HUANG H T, WANG D, et al. Design and Control of a High-torque and Highly Backdrivable Hybrid Soft Exoskeleton for Knee Injury Prevention during Squatting[J]. IEEE Robotics and Automation Letters, 2019, 4(4):4579-4586.
[7]刘冰, 李宁, 于鹏, 等. 上肢康复外骨骼机器人控制方法进展研究[J]. 电子科技大学学报, 2020, 49(5):641-651.
LIU Bing, LI Ning, YU Peng, et al. Research on the Control Methods of Upper Limb Rehabilitation Exoskeleton Robot[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(5):641-651.
[8]LUO L C, PENG L, WANG C, et al. A Greedy Assist-as-needed Controller for Upper Limb Rehabilitation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11):3433-3443.
[9]WU Q C, WANG X S, CHEN B, et al. Development of a Minimal-intervention-based Admittance Control Strategy for Upper Extremity Rehabilitation Exoskeleton[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 48(6):1005-1016.
[10]LUZIO F S, DAVIDE S, CORDELLA F, et al. Bio-cooperative Approach for the Human-in-the-loop Control of an End-effector Rehabilitation Robot[J]. Frontiers in Neurorobotics, 2018, 12:67.
[11]LI M, LIANG Z T, HE B, et al. Attention-controlled Assistive Wrist Rehabilitation Using a Low-cost EEG Sensor[J]. IEEE Sensors Journal, 2019, 19(15):6497-6507.
[12]SHAO Z Y, WU Q C, CHEN B, et al. Modeling and Inverse Control of a Compliant Single-tendon-sheath Artificial Tendon Actuator with Bending Angle Compensation[J]. Mechatronics, 2019, 63:102262.
[13]FALISSE A, VAN S R, JONKERS I, et al. EMG-driven Optimal Estimation of Subject-SPECIFIC Hill Model Muscle-tendon Parameters of the Knee Joint Actuators[J]. IEEE Transactions on Biomedical Engineering, 2017, 64(9):2253-2262.
[14]DAVID G L, THOR F B. An EMG-driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments in Vivo[J]. Journal of Biomechanics, 2003, 36(6):765-776.
[15]FLEISCHER C, HOMMEL G. A Human-exoske-leton Interface Utilizing Electromyography[J]. IEEE Transactions on Robot, 2008, 24(4):872-882.
[16]LEE H D, LEE B K, KIM W S, et al. Human-robot Cooperation Control Based on a Dynamic Model of an Upper Limb Exoskeleton for Human Power Amplification[J]. Mechatronics, 2014, 24(2):168-176.