China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (9): 1996-2002.DOI: 10.3969/j.issn.1004-132X.2025.09.011
Haoxi ZHANG1(), Jie JIANG1(
), Gang JIANG2, Yue LI1, Xing'an HAO1
Received:
2024-07-31
Online:
2025-09-25
Published:
2025-10-15
Contact:
Jie JIANG
通讯作者:
姜杰
作者简介:
张颢曦,男,2000年生,硕士研究生。研究方向为六足机器人足地力学建模与仿真。E-mail:460290958@qq.com基金资助:
CLC Number:
Haoxi ZHANG, Jie JIANG, Gang JIANG, Yue LI, Xing'an HAO. Study on Mechanics Model of Leg Lift Retardation for Hexapod Robot in Clay Environment[J]. China Mechanical Engineering, 2025, 36(9): 1996-2002.
张颢曦, 姜杰, 蒋刚, 李月, 郝兴安. 黏土环境下六足机器人抬腿阻滞力学模型研究[J]. 中国机械工程, 2025, 36(9): 1996-2002.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.09.011
参数 | 黏聚力/kPa | 内摩擦角/(°) | 容重/(kN·m-3) |
---|---|---|---|
目标黏土 | 5 | 16.4 | 18.6 |
模拟黏土 | 5 | 15.7 | 16.2 |
粉土[ | 15 | 25 | 17.3 |
砂土[ | 0 | 36 | 15.1 |
Tab.1 Comparison of parameters of target soil and simulated soil
参数 | 黏聚力/kPa | 内摩擦角/(°) | 容重/(kN·m-3) |
---|---|---|---|
目标黏土 | 5 | 16.4 | 18.6 |
模拟黏土 | 5 | 15.7 | 16.2 |
粉土[ | 15 | 25 | 17.3 |
砂土[ | 0 | 36 | 15.1 |
接触模型 | 黏性 | 压缩性 | 适用场景 |
---|---|---|---|
Hertz-Mindlin | 无 | 无 | 常规颗粒接触 |
Edinburgh Elasto-Plastic Adhesion | 有 | 有 | 黏弹塑性颗粒接触 |
Hysteretic Spring | 无 | 有 | 受压后塑性形变颗粒接触 |
Hertz-Mindlin with JKR | 有 | 无 | 粉体或湿颗粒接触 |
Bonding | 有 | 有 | 破碎颗粒接触 |
Electrostatics | 有 | 无 | 静电颗粒接触 |
Tab.2 Contact model characteristics and applicable scenarios
接触模型 | 黏性 | 压缩性 | 适用场景 |
---|---|---|---|
Hertz-Mindlin | 无 | 无 | 常规颗粒接触 |
Edinburgh Elasto-Plastic Adhesion | 有 | 有 | 黏弹塑性颗粒接触 |
Hysteretic Spring | 无 | 有 | 受压后塑性形变颗粒接触 |
Hertz-Mindlin with JKR | 有 | 无 | 粉体或湿颗粒接触 |
Bonding | 有 | 有 | 破碎颗粒接触 |
Electrostatics | 有 | 无 | 静电颗粒接触 |
参数 | 数值 |
---|---|
颗粒粒径/mm | 2 |
颗粒密度/( | 2600 |
泊松比 | 0.25 |
剪切模量/Pa | |
恢复系数 | 0.75 |
静摩擦因数 | 1.16 |
滚动摩擦因数 | 0.29 |
表面能/( | 0.6 |
Tab.3 Soil particle parameter
参数 | 数值 |
---|---|
颗粒粒径/mm | 2 |
颗粒密度/( | 2600 |
泊松比 | 0.25 |
剪切模量/Pa | |
恢复系数 | 0.75 |
静摩擦因数 | 1.16 |
滚动摩擦因数 | 0.29 |
表面能/( | 0.6 |
[1] | 翟硕, 虞拯, 金波. 多足步行机器人液压控制系统研究现状与发展趋势[J]. 机器人, 2018, 40(6): 958-968. |
ZHAI Shuo, YU Zheng, JIN Bo. Research Status and Development Trend of Hydraulic Control System for Multi-legged Walking Robot[J]. Robot, 2018, 40(6): 958-968. | |
[2] | ZAPOLSKY S, DRUMWRIGHT E. Inverse Dynamics with Rigid Contact and Friction[J]. Autonomous Robots, 2017, 41(4): 831-863. |
[3] | MAHAPATRA A, ROY S S, PRATIHAR D K. Inverse Dynamics and Feet-terrain Collision Model for Optimal Distribution of the Contact Forces during Crab Motion of a Hexapod Robot[M]∥CAD/CAM, Robotics and Factories of the Future. New Delhi: Springer, 2016: 85-95. |
[4] | 娄文韬. 液压驱动型机器人腿部足地交互数学建模及碰撞分析[D]. 秦皇岛: 燕山大学, 2021. |
LOU Wentao. Mathematical Modeling and Collision Analysis of Foot and Ground Interaction of Hydraulic Drive Robot[D]. Qinhuangdao: Yanshan University, 2021. | |
[5] | COURREGES F, LARIBI M A, ARSICAULT M, et al. In Vivo and in Vitro Comparative Assessment of the Log-linearized Hunt-Crossley Model for Impact-contact Modeling in Physical Human-Robot Interactions[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2019, 233(10): 1376-1391. |
[6] | 孙昊, 刘铸永, 刘锦阳. 机器人单足系统沙土跳跃刚-散耦合动力学分析[J]. 力学学报, 2022, 54(12): 3486-3495. |
SUN Hao, LIU Zhuyong, LIU Jinyang. Rigid-discrete Coupling Dynamic Analysis of Robot Mono-pedal System Jumping in Sand[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3486-3495. | |
[7] | 刘逸群, 陆培栋, 张志鹏, 等. 松软地质上机器人足-地动力学建模与试验[J]. 机械工程学报, 2022, 58(5): 8-17. |
LIU Yiqun, LU Peidong, ZHANG Zhipeng, et al. Modeling and Verification of Robot Foot-terrain Dynamics in Soft Geology[J]. Journal of Mechanical Engineering, 2022, 58(5): 8-17. | |
[8] | 徐佳炜, 何钢, 胡鹏, 等. 复杂脚底形状对机器人脚沉陷中挤土效应影响的研究[J]. 机械科学与技术, 2016, 35(12): 1930-1936. |
XU Jiawei, HE Gang, HU Peng, et al. Study on Soil Squeezing Effect of Complex Plantar Shape in Sinking of Robot's Foot[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(12): 1930-1936. | |
[9] | 陆培栋. 松软地质环境下机器人足-地作用力学模型与实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2021. |
LU Peidong. Research on Model and Experiment of Foot-ground Interaction Mechanics of the Robot in Soft Geology[D]. Harbin: Harbin Institute of Technology, 2021. | |
[10] | JANOSI Z, ANAMOTO B. The Analytical Determination of Drawbar Pull as A Function of Slip for Tracked Vehicle in Deformable Soils[C]∥The 1st International Conference on the Mechanics of Soil-Vehicle Systems. Torino, 1961:707-736. |
[11] | 任露泉, 陈德兴, 陈秉聪. 土壤粘附研究概述[J]. 农业工程学报, 1990, 6(1): 1-7. |
REN Luquan, CHEN Dexing, CHEN Bingcong. A Summary of Study on Soil Adhesion[J]. Transactions of the Chinese Society of Agricultural Engineering, 1990, 6(1): 1-7. | |
[12] | KITO K. 水表面张力对切向土壤黏附力的影响(摘选)[J]. 农业工程, 2012, 2(7): 80-82. |
KITO K. Effect of Water Surface Tension on Tangential Soil Adhesion(Extracts)[J]. Agricultural Engineering, 2012, 2(7): 80-82. | |
[13] | 宋春霞. 冻融作用对土物理力学性质影响的试验研究[D]. 西安: 西安理工大学, 2007. |
SONG Chunxia. Experimental Study of the Freeze-thaw Effects on Physical and Mechanical Properties of Soils[D]. Xi'an: Xi'an University of Technology, 2007. | |
[14] | 严明康. 含水率对砂土似粘聚力的影响及工程应用研究[D]. 西安: 长安大学, 2018. |
YAN Mingkang. The Effect of Water Content on Apparent Cohesion of Sand and Its Engineering Application[D]. Xi'an: Chang'an University, 2018. | |
[15] | CHOPRA S, TOLLEY M T, GRAVISH N. Granular Jamming Feet Enable Improved Foot-ground Interactions for Robot Mobility on Deformable Ground[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 3975-3981. |
[16] | SCOTT G P, SAAJ C M. The Development of a Soil Trafficability Model for Legged Vehicles on Granular Soils[J]. Journal of Terramechanics, 2012, 49(3/4): 133-146. |
[17] | 杨晋文. 土与结构接触面的离散元模拟与微观结构特性研究[D]. 北京: 中国水利水电科学研究院, 2019. |
YANG Jinwen. DEM Study on Soil-structure Interface and Its Microstructural Characteristics[D]. Beijing: China Institute of Water Resources and Hydropower Research, 2019. | |
[18] | 王宪良, 钟晓康, 耿元乐, 等. 基于离散元非线性弹塑性接触模型的免耕土壤参数标定[J]. 农业工程学报, 2021, 37(23): 100-107. |
WANG Xianliang, ZHONG Xiaokang, GENG Yuanle, et al. Construction and Parameter Calibration of the Nonlinear Elastoplastic Discrete Element Model for No-tillage Soil Compaction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(23): 100-107. | |
[19] | 潘万竞. 基于离散元理论的月尘颗粒接触力学特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. |
PAN Wanjing. Research on Contact Mechanical Properties of Lunar Dust Particles Based on Discrete Element Method[D]. Harbin: Harbin Institute of Technology, 2016. |
[1] | LIU Chunchao1, ZHU Yaguang1, 2, ZHOU Yating1, HAN Zhigang1. Adaptive Impedance Control of Hexapod Robots Based on Virtual Motoneuron System [J]. China Mechanical Engineering, 2025, 36(02): 315-324,332. |
[2] | WANG Wei, WEI Lang, LIU Fusheng, WANG Guoshun. Research on Compliant Legs of Bionic Hexapod Robots [J]. China Mechanical Engineering, 2023, 34(17): 2089-2094. |
[3] | WANG Yu, ZHOU Shuang, LI Yaxin. Design and Performance Evaluation of Amphibious Hexapod Robots [J]. China Mechanical Engineering, 2022, 33(17): 2079-2086. |
[4] | XIE Dongfu1;LUO Yufeng1,2;SHI Zhixin1;LIU Yande2. Research on Cooperative Modes and Tipping Stability of Multiple Mobile Robots [J]. China Mechanical Engineering, 2020, 31(20): 2472-2485. |
[5] | AI Qinglin;XU Dong;ZHANG Libin. Hexapod Robot Dynamic Stability Based on Impedance Characteristics [J]. China Mechanical Engineering, 2017, 28(24): 2981-2989. |
[6] | AI Qinglin;RUAN Huixiang;CHEN Jiaoliao;YING Shenshun. Gait Planning of a Hexapod Robot Based on Multi-dimensional Space Coupled [J]. China Mechanical Engineering, 2017, 28(23): 2829-2838. |
[7] | Li Manhong, Zhang Minglu, Zhang Jianhua, Zhang Xiaojun. Body Motion Planning for a Hexapod Robot Based on Relative Motion [J]. China Mechanical Engineering, 2015, 26(3): 313-318. |
[8] | Li Manhong, Zhang Jianhua, Zhang Minglu. Foot Trajectory Planning for a Hexapod Biomimetic Robot Using Free Gait [J]. China Mechanical Engineering, 2014, 25(6): 821-824. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||