China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (8): 1774-1783.DOI: 10.3969/j.issn.1004-132X.2025.08.013
Hongyu GE(), Zhan ZHAO, Anxiang GUO, Jiarui SUN
Received:
2024-07-17
Online:
2025-08-25
Published:
2025-09-18
作者简介:
葛红玉*,女,1982年生,副教授、博士。研究方向为智能制造装备可靠性。E-mail: gxy-xkd@xust.edu.cn。
基金资助:
CLC Number:
Hongyu GE, Zhan ZHAO, Anxiang GUO, Jiarui SUN. Fault Diagnosability Evaluation of Meta Actuation Units Based on SABO-VMD[J]. China Mechanical Engineering, 2025, 36(8): 1774-1783.
葛红玉, 赵展, 郭安祥, 孙佳瑞. 基于SABO-VMD的数控机床元动作单元故障可诊断性评价[J]. 中国机械工程, 2025, 36(8): 1774-1783.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.08.013
故障状态编号 | 故障状态名称 |
---|---|
t0 | 正常 |
t1 | 联轴器内接触面磨损 |
t2 | 梅花星形弹性键形变 |
t3 | 平键表面磨损 |
t4 | 平键定位孔磨损 |
t5 | 轴承装配间隙过大 |
t6 | 轴承润滑不良 |
t7 | 蜗杆轴线偏移 |
Tab. 1 Worm gear meta actuation unit fault mode
故障状态编号 | 故障状态名称 |
---|---|
t0 | 正常 |
t1 | 联轴器内接触面磨损 |
t2 | 梅花星形弹性键形变 |
t3 | 平键表面磨损 |
t4 | 平键定位孔磨损 |
t5 | 轴承装配间隙过大 |
t6 | 轴承润滑不良 |
t7 | 蜗杆轴线偏移 |
模态分量 | IMF1 | IMF2 | IMF3 | IMF4 |
---|---|---|---|---|
局部最小包络熵 | 7.5455 | 7.0693 | 6.4656 | 6.4808 |
峭度值 | 4.778 | 3.6927 | 3.2509 | 3.9918 |
相关系数 | 0.718 | 0.413 | 0.284 | 0.528 |
Tab. 2 Local minimum envelope entropy,kurtosis and correlation coefficients
模态分量 | IMF1 | IMF2 | IMF3 | IMF4 |
---|---|---|---|---|
局部最小包络熵 | 7.5455 | 7.0693 | 6.4656 | 6.4808 |
峭度值 | 4.778 | 3.6927 | 3.2509 | 3.9918 |
相关系数 | 0.718 | 0.413 | 0.284 | 0.528 |
编号 | 故障类型 | 最佳参数(k,α) |
---|---|---|
t0 | 正常 | (5,1716) |
t1 | 联轴器内接触面磨损 | (7,2115) |
t2 | 梅花星形弹性键形变 | (3,258) |
t3 | 平键表面磨损 | (7,2312) |
t4 | 平键定位孔磨损 | (8,1895) |
t5 | 轴承装配间隙过大 | (6,1058) |
t6 | 轴承润滑不良 | (9,1127) |
t7 | 蜗杆轴线偏移 | (4,864) |
Tab. 3 Types of experimental data
编号 | 故障类型 | 最佳参数(k,α) |
---|---|---|
t0 | 正常 | (5,1716) |
t1 | 联轴器内接触面磨损 | (7,2115) |
t2 | 梅花星形弹性键形变 | (3,258) |
t3 | 平键表面磨损 | (7,2312) |
t4 | 平键定位孔磨损 | (8,1895) |
t5 | 轴承装配间隙过大 | (6,1058) |
t6 | 轴承润滑不良 | (9,1127) |
t7 | 蜗杆轴线偏移 | (4,864) |
[1] | 王大轶, 符方舟, 刘成瑞, 等. 控制系统可诊断性的内涵与研究综述[J]. 自动化学报, 2018, 44(9): 1537-1553. |
WANG Dayi, FU Fangzhou, LIU Chengrui, et al. Connotation and Research Status of Diagnosability of Control Systems: a Review[J]. Acta Automatica Sinica, 2018, 44(9): 1537-1553. | |
[2] | 张根保, 张恒, 范秀君, 等. 数控机床基于FMA的功能分解与可靠性分析[J]. 机械科学与技术, 2012, 31(4): 528-533. |
ZHANG Genbao, ZHANG Heng, FAN Xiujun, et al. Function Decomposition and Reliability Analysis of CNC Machine Using Function-motion-action[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(4): 528-533. | |
[3] | LIN Lixiong, WANG Qing, HE Bingwei, et al. Evaluation of Fault Diagnosability for Nonlinear Uncertain Systems with Multiple Faults Occurring Simultaneously[J]. Journal of Systems Engineering and Electronics, 2020, 31(3): 634-646. |
[4] | ZHAO Dong, AHN C K, PASZKE W, et al. Fault Diagnosability Analysis of Two-dimensional Linear Discrete Systems[J]. IEEE Transactions on Automatic Control, 2021, 66(2): 826-832. |
[5] | VERDIÈRE N, JAUBERTHIE C, TRAVÉ-MASSUYÈS L. Functional Diagnosability and Detectability of Nonlinear Models Based on Analytical Redundancy Relations[J]. Journal of Process Control, 2015, 35: 1-10. |
[6] | TERMECHE A, BENAZZOUZ D, BOUAMAMA B O, et al. Augmented Analytical Redundancy Relations to Improve the Fault Isolation[J]. Mechatronics, 2018, 55: 129-140. |
[7] | CABRAL F G, MOREIRA M V. Synchronous Diagnosis of Discrete-event Systems[J]. IEEE Transactions on Automation Science and Engineering, 2020, 17(2): 921-932. |
[8] | JIANG Dongnian, LI Wei. Multi-objective Optimal Placement of Sensors Based on Quantitative Evaluation of Fault Diagnosability[J]. IEEE Access, 2019, 7: 117850-117860. |
[9] | FU Fangzhou, WANG Dayi. A Method for Quantitative Fault Diagnosability Analysis of Systems with Probabilistic Sensor Faults[J]. International Journal of Control, Automation and Systems, 2019, 17(8): 2159-2164. |
[10] | FU Fangzhou, WANG Dayi, LI Linlin, et al. Data-driven Method for the Quantitative Fault Diagnosability Analysis of Dynamic Systems[J]. IET Control Theory & Applications, 2019, 13(8): 1197-1203. |
[11] | FU Fangzhou, WANG Dayi, LI Wenbo, et al. Data-driven Fault Identifiability Analysis for Discrete-time Dynamic Systems[J]. International Journal of Systems Science, 2020, 51(2): 404-412. |
[12] | FU Fangzhou, XUE Ting, WU Zhigang, et al. A Fault Diagnosability Evaluation Method for Dynamic Systems without Distribution Knowledge[J]. IEEE Transactions on Cybernetics, 2020, 52(6): 5113-5123. |
[13] | 彭珍瑞, 刘臻. 基于故障可诊断性的齿轮箱传感器优化布置[J]. 振动与冲击, 2021, 40(4): 155-163. |
PENG Zhenrui, LIU Zhen. Optimal Sensor Placement of a Gear Box Based on Fault Diagnosability[J]. Journal of Vibration and Shock, 2021, 40(4): 155-163. | |
[14] | XUE Yajuan, CAO Junxing, WANG Daxing, et al. Application of the Variational-mode Decomposition for Seismic Time–Frequency Analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(8): 3821-3831. |
[15] | ZHANG Yaping, QI Xiaozhi, WANG Tao, et al. Tool Wear Condition Monitoring Method Based on Deep Learning with Force Signals[J]. Sensors, 2023, 23(10): 4595. |
[16] | XIE Zhijie, YU Di, ZHAN Changshu, et al. Ball Screw Fault Diagnosis Based on Continuous Wavelet Transform and Two-dimensional Convolution Neural Network[J]. Measurement and Control, 2023, 56(3/4): 518-528. |
[17] | LEE W G, LEE J W, HONG M S, et al. Failure Diagnosis System for a Ball-screw by Using Vibration Signals[J]. Shock and Vibration, 2015, 2015(1): 435870. |
[18] | ZHENG Jinde, SU Miaoxian, YING Wanming, et al. Improved Uniform Phase Empirical Mode Decomposition and Its Application in Machinery Fault Diagnosis[J]. Measurement, 2021, 179: 109425. |
[19] | FENG Zhipeng, ZHANG Dong, ZUO M J. Adaptive Mode Decomposition Methods and Their Applications in Signal Analysis for Machinery Fault Diagnosis: a Review with Examples[J]. IEEE Access, 2017, 5: 24301-24331. |
[20] | ZHENG Jinde. Rolling Bearing Fault Diagnosis Based on Partially Ensemble Empirical Mode Decomposition and Variable Predictive Model-based Class Discrimination[J]. Archives of Civil and Mechanical Engineering, 2016, 16(4): 784-794. |
[21] | ZHAO Huimin, LIU Hailong, XU Junjie, et al. Research on a Fault Diagnosis Method of Rolling Bearings Using Variation Mode Decomposition and Deep Belief Network[J]. Journal of Mechanical Science and Technology, 2019, 33(9): 4165-4172. |
[22] | DRAGOMIRETSKIY K, ZOSSO D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. |
[23] | ZHANG Xin, ZHAO Jianmin. Compound Fault Detection in Gearbox Based on Time Synchronous Resample and Adaptive Variational Mode Decomposition[J]. Eksploatacja I Niezawodność—Maintenance and Reliability, 2020, 22(1): 161-169. |
[24] | YI Yingmin, TIAN Ge. Feature Extraction Method of Ship Radiated Noise Based on BOA-VMD and Slope Entropy[J]. Frontiers in Physics, 2022, 10: 1043070. |
[25] | ZHANG Yu, WU Yuhu, LI Lianmin, et al. A Hybrid Energy Storage System Strategy for Smoothing Photovoltaic Power Fluctuation Based on Improved HHO-VMD[J]. International Journal of Photoenergy, 2023, 2023(1): 9633843. |
[26] | 唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81. |
TANG Guiji, WANG Xiaolong. Parameter Optimized Variational Mode Decomposition Method with Application to Incipient Fault Diagnosis of Rolling Bearing[J]. Journal of Xi’an Jiaotong University, 2015, 49(5): 73-81. | |
[27] | ZHANG Ying, WANG Anchen. Research on the Fault Diagnosis Method for Rolling Bearings Based on Improved VMD and Automatic IMF Acquisition[J]. Shock and Vibration, 2020, 2020: 6216903. |
[28] | 杨岗, 邓琴, 卫昱乾, 等. 模态特征分量(IMF)在轴承故障诊断中的选用原则综述[J]. 铁道车辆, 2023, 61(6): 7-15. |
YANG Gang, DENG Qin, WEI Yuqian, et al. Review of the Principle of Selecting the Intrinsic Mode Functions (IMF) in the Bearing Fault Diagnosis[J]. Rolling Stock, 2023, 61(6): 7-15. | |
[29] | TROJOVSKÝ P, DEHGHANI M. Subtraction-average-based Optimizer: a New Swarm-inspired Metaheuristic Algorithm for Solving Optimization Problems[J]. Biomimetics, 2023, 8(2): 149. |
[30] | 来凌红, 吴虎胜, 吕建新, 等. 基于EMD和样本熵的滚动轴承故障SVM识别[J]. 煤矿机械, 2011, 32(1): 249-252. |
LAI Linghong, WU Husheng, JianxinLYU, et al. SVM Recognition Method Based on EMD and Sample Entropy in Rolling Bearing Fault Diagnosis[J]. Coal Mine Machinery, 2011, 32(1): 249-252. |
[1] | YIN Jia1, ZHENG Jian2, LIU Yao3, JIA Baoguo1, DUAN Xiaorui1. Thin-walled Workpiece Milling Deformation Error Prediction Based on Multi-source Information Fusion and Ensemble Learning [J]. China Mechanical Engineering, 2025, 36(06): 1261-1268. |
[2] | YANG Kang1, CHEN Xuejun1, 2, ZHANG Lei3, LIU Feng3. Cross-domain Fault Diagnosis of Bearings Based on Joint Subdomain Contrast Alignment [J]. China Mechanical Engineering, 2025, 36(05): 1065-1073. |
[3] | GUO Haiyu1, ZOU Shenggong1, ZHANG Xiaoguang2, 3, 4, LU Fanfan2CHEN Yang2, WANG Han2, XU Xinzhi2. Fault Diagnosis of Rotating Machinery Bearings Based on Multi-source Wavelet Transform Neural Network [J]. China Mechanical Engineering, 2024, 35(11): 2026-2034. |
[4] | LIU Xiaofeng, KANG Yingying , BO Lin. Self-driven Independent Degradation Trajectory Construction and Remaining Life Gray Prediction for Bearings [J]. China Mechanical Engineering, 2024, 35(09): 1613-1621,1652. |
[5] | LI Can1, 2, WANG Guangbin2, 1, ZHAO Shubiao1, 2, ZHONG Zhixian1, ZHANG Hui1, 2. Bearing Fault Diagnosis Method Based on Intensive Distribution Alignment with Open Set Difference [J]. China Mechanical Engineering, 2024, 35(09): 1622-1633. |
[6] | WANG Qiulian1, OU Guixiong1, XU Xuejiao1, LIU Jinrong1, MA Guohong2, DENG Hongbiao2. Research on CNC Milling Machine Cutting Power Prediction Model Considering Tool Wear Based on VMD-SSA-LSTM [J]. China Mechanical Engineering, 2024, 35(06): 1052-1063. |
[7] | XIAO Gang, GU Hairui, DONG Jinjin, WANG Qibing, LU Jiawei. Simulation Data-driven Migration Diagnosis Method for Guide Rail Faults in Long-term Service Elevators [J]. China Mechanical Engineering, 2024, 35(01): 125-135. |
[8] | YU Shubo, LIU Zhansheng, ZHAO Chen. Dynamics Simulation Data Driven Domain Adaptive Intelligent Fault Diagnosis [J]. China Mechanical Engineering, 2023, 34(23): 2832-2841. |
[9] | JI Yongjian, YAO Licheng, . Research on Self-adaptive Chatter Recognition Method for Robotic Milling [J]. China Mechanical Engineering, 2023, 34(18): 2165-2176. |
[10] | SHEN Ziyu, ZHANG Zhai, WANG Youren, LI Hongkun. Analysis of Transmission Characteristics of Sun Wheel Root Cracks in Planetary Wheel Gearboxes#br# [J]. China Mechanical Engineering, 2023, 34(18): 2177-2185. |
[11] | LI Xin, CHENG Junsheng, WU Xiaowei, WANG Jian, YANG Yu, . Early Weak Fault Detection Method of Gear Rotating Machinery by Combining SPCA and OCHD [J]. China Mechanical Engineering, 2023, 34(15): 1805-1812. |
[12] | LIU Yao, CHEN Gaige, LIU Zhenguo, KONG Xianguang, CHANG Jiantao. Health Assessment Method of Shield Machine Cutterheads Driven by Association Rule Mining [J]. China Mechanical Engineering, 2023, 34(11): 1326-1334,1342. |
[13] | ZHANG Long, HU Yanqing, ZHAO Lijuan, ZHANG Hao. Multichannel Information Fusion and Deep Transfer Learning for Rotating Machinery Fault Diagnosis [J]. China Mechanical Engineering, 2023, 34(08): 966-975. |
[14] | DONG Shaojiang, ZHU Peng, ZHU Sunke, LIU Lanhui, XING Bin, HU Xiaolin. Fault Diagnosis Method of Rolling Bearings Based on Simulation Data Drive and Domain Adaptation [J]. China Mechanical Engineering, 2023, 34(06): 694-702. |
[15] | WU Zhenyu, ZHENG Guangming, YAN Pei, YANG Xianhai, ZHAO Guangxi, LI Xuewei. Effects of Surface Treatment on Surface Integrity and Cutting Performance of TiAlSiN Coated Cutting Tools [J]. China Mechanical Engineering, 2023, 34(01): 75-83. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||