China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (12): 2944-2951.DOI: 10.3969/j.issn.1004-132X.2025.12.017
Previous Articles Next Articles
Yufeng XIAO1(
), Chaoyong ZHANG1,2, Saixiyalatu2, Yifan MENG1, Chuanjun ZHU1(
)
Received:2025-03-30
Online:2025-12-25
Published:2025-12-31
Contact:
Chuanjun ZHU
肖御风1(
), 张超勇1,2, 赛希亚拉图2, 孟一帆1, 朱传军1(
)
通讯作者:
朱传军
作者简介:肖御风,男,2000年生,硕士研究生。研究方向为智能装备与工艺、刀具磨损监测与预测。E-mail:xyf08240010@163.com基金资助:CLC Number:
Yufeng XIAO, Chaoyong ZHANG, Saixiyalatu, Yifan MENG, Chuanjun ZHU. Multi-step Ahead Real-time Prediction of Tool Wear Based on YOLOv11-Seg and Transformer Model[J]. China Mechanical Engineering, 2025, 36(12): 2944-2951.
肖御风, 张超勇, 赛希亚拉图, 孟一帆, 朱传军. 基于YOLOv11-Seg与Transformer模型的刀具磨损多步向前实时预测方法[J]. 中国机械工程, 2025, 36(12): 2944-2951.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.12.017
| 参数 | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10 | 5 | 13.25 | 110.12 | 8.87 | 8.36 | 85.26 | 6.22 | 10.08 | 96.35 | 8.14 | 90.33 | 94.52 | |
| 10 | 5.99 | 12.24 | 7.84 | 4.91 | 11.06 | 4.36 | 4.56 | 10.89 | 6.06 | 98.15 | 88.20 | 95.87 | |
| 15 | 3.94 | 10.98 | 8.64 | 3.47 | 8.04 | 6.54 | 3.63 | 8.63 | 7.58 | 98.91 | 89.76 | 95.32 | |
| 20 | 5 | 7.76 | 154.37 | 9.40 | 4.10 | 75.77 | 6.30 | 5.96 | 101.53 | 8.24 | 95.88 | 94.20 | |
| 10 | 7.19 | 13.07 | 7.78 | 4.02 | 10.68 | 5.73 | 5.53 | 11.39 | 7.06 | 96.31 | 85.49 | 95.16 | |
| 15 | 4.01 | 100.66 | 4.13 | 2.20 | 58.29 | 2.86 | 3.08 | 72.07 | 3.52 | 98.77 | 98.34 | ||
| 30 | 5 | 4.42 | 53.26 | 13.04 | 3.17 | 34.17 | 7.93 | 3.61 | 42.09 | 10.96 | 98.96 | 87.03 | |
| 10 | 3.76 | 15.71 | 8.58 | 2.92 | 9.93 | 5.51 | 2.96 | 11.93 | 7.27 | 99.23 | 78.21 | 94.33 | |
| 15 | 12.99 | 5.68 | 18.42 | 10.29 | 4.50 | 8.53 | 12.64 | 4.72 | 13.52 | 88.39 | 97.24 | 74.09 | |
Tab.1 Prediction results of MFTWP model without RCS
| 参数 | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10 | 5 | 13.25 | 110.12 | 8.87 | 8.36 | 85.26 | 6.22 | 10.08 | 96.35 | 8.14 | 90.33 | 94.52 | |
| 10 | 5.99 | 12.24 | 7.84 | 4.91 | 11.06 | 4.36 | 4.56 | 10.89 | 6.06 | 98.15 | 88.20 | 95.87 | |
| 15 | 3.94 | 10.98 | 8.64 | 3.47 | 8.04 | 6.54 | 3.63 | 8.63 | 7.58 | 98.91 | 89.76 | 95.32 | |
| 20 | 5 | 7.76 | 154.37 | 9.40 | 4.10 | 75.77 | 6.30 | 5.96 | 101.53 | 8.24 | 95.88 | 94.20 | |
| 10 | 7.19 | 13.07 | 7.78 | 4.02 | 10.68 | 5.73 | 5.53 | 11.39 | 7.06 | 96.31 | 85.49 | 95.16 | |
| 15 | 4.01 | 100.66 | 4.13 | 2.20 | 58.29 | 2.86 | 3.08 | 72.07 | 3.52 | 98.77 | 98.34 | ||
| 30 | 5 | 4.42 | 53.26 | 13.04 | 3.17 | 34.17 | 7.93 | 3.61 | 42.09 | 10.96 | 98.96 | 87.03 | |
| 10 | 3.76 | 15.71 | 8.58 | 2.92 | 9.93 | 5.51 | 2.96 | 11.93 | 7.27 | 99.23 | 78.21 | 94.33 | |
| 15 | 12.99 | 5.68 | 18.42 | 10.29 | 4.50 | 8.53 | 12.64 | 4.72 | 13.52 | 88.39 | 97.24 | 74.09 | |
| 参数 | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10 | 5 | 0.85 | 2.59 | 2.02 | 0.69 | 1.95 | 1.35 | 0.63 | 1.80 | 1.27 | 99.94 | 99.49 | 99.75 |
| 10 | 1.89 | 2.92 | 2.07 | 1.51 | 2.36 | 1.19 | 1.32 | 2.17 | 1.39 | 99.92 | 99.56 | 99.64 | |
| 15 | 1.68 | 3.44 | 3.21 | 1.33 | 3.05 | 2.01 | 1.22 | 2.79 | 2.35 | 99.30 | 98.84 | 99.29 | |
| 20 | 5 | 1.48 | 3.39 | 2.59 | 1.07 | 3.02 | 1.85 | 1.21 | 2.80 | 2.24 | 99.31 | 99.22 | 99.54 |
| 10 | 1.50 | 2.94 | 3.06 | 1.16 | 2.55 | 2.05 | 1.21 | 2.42 | 2.50 | 99.46 | 99.54 | 99.61 | |
| 15 | 1.09 | 5.58 | 2.67 | 0.77 | 4.42 | 1.81 | 0.84 | 4.23 | 2.23 | 98.67 | 97.40 | 99.42 | |
| 30 | 5 | 2.24 | 2.71 | 3.03 | 1.61 | 2.50 | 2.16 | 1.71 | 2.45 | 2.66 | 99.31 | 99.27 | 98.96 |
| 10 | 2.64 | 2.93 | 3.26 | 1.98 | 2.49 | 2.14 | 1.94 | 2.48 | 2.69 | 99.45 | 98.64 | 99.19 | |
| 15 | 3.16 | 3.39 | 3.09 | 1.97 | 2.79 | 1.91 | 1.78 | 2.79 | 2.51 | 99.24 | 99.38 | 99.81 | |
Tab.2 Prediction results of MFTWP model with RCS
| 参数 | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 10 | 5 | 0.85 | 2.59 | 2.02 | 0.69 | 1.95 | 1.35 | 0.63 | 1.80 | 1.27 | 99.94 | 99.49 | 99.75 |
| 10 | 1.89 | 2.92 | 2.07 | 1.51 | 2.36 | 1.19 | 1.32 | 2.17 | 1.39 | 99.92 | 99.56 | 99.64 | |
| 15 | 1.68 | 3.44 | 3.21 | 1.33 | 3.05 | 2.01 | 1.22 | 2.79 | 2.35 | 99.30 | 98.84 | 99.29 | |
| 20 | 5 | 1.48 | 3.39 | 2.59 | 1.07 | 3.02 | 1.85 | 1.21 | 2.80 | 2.24 | 99.31 | 99.22 | 99.54 |
| 10 | 1.50 | 2.94 | 3.06 | 1.16 | 2.55 | 2.05 | 1.21 | 2.42 | 2.50 | 99.46 | 99.54 | 99.61 | |
| 15 | 1.09 | 5.58 | 2.67 | 0.77 | 4.42 | 1.81 | 0.84 | 4.23 | 2.23 | 98.67 | 97.40 | 99.42 | |
| 30 | 5 | 2.24 | 2.71 | 3.03 | 1.61 | 2.50 | 2.16 | 1.71 | 2.45 | 2.66 | 99.31 | 99.27 | 98.96 |
| 10 | 2.64 | 2.93 | 3.26 | 1.98 | 2.49 | 2.14 | 1.94 | 2.48 | 2.69 | 99.45 | 98.64 | 99.19 | |
| 15 | 3.16 | 3.39 | 3.09 | 1.97 | 2.79 | 1.91 | 1.78 | 2.79 | 2.51 | 99.24 | 99.38 | 99.81 | |
| 100 | 1 | 56.17 | 49.58 | 46.99 | |
| 10 | 6 | 7.58 | 7.27 | 6.70 | 96.36 |
| 1 | 45 | 2.59 | 1.95 | 1.80 | 99.49 |
Tab.3 The impact of δ on model prediction accuracy (C4)
| 100 | 1 | 56.17 | 49.58 | 46.99 | |
| 10 | 6 | 7.58 | 7.27 | 6.70 | 96.36 |
| 1 | 45 | 2.59 | 1.95 | 1.80 | 99.49 |
| 模型 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CNN | 1.37 | 1.62 | 1.37 | 1.51 | 1.60 | 1.26 | 0.74 | 1.06 | 0.95 | 99.87 | 99.40 | 99.58 |
| TCN | 2.01 | 2.53 | 1.95 | 2.21 | 2.33 | 2.18 | 1.15 | 1.30 | 1.28 | 98.75 | 98.47 | 97.53 |
| BiLSTM | 0.88 | 1.10 | 1.13 | 0.54 | 0.81 | 0.86 | 0.80 | 0.96 | 0.98 | 99.96 | 99.91 | 99.91 |
| GRU | 0.85 | 1.70 | 1.73 | 0.78 | 1.59 | 1.43 | 0.69 | 1.50 | 1.50 | 99.92 | 99.17 | 99.32 |
| Transformer | 0.48 | 1.01 | 1.03 | 0.32 | 0.98 | 0.85 | 0.33 | 0.84 | 0.86 | 99.98 | 99.94 | 99.94 |
Tab.4 Performance metrics of tool wear prediction model
| 模型 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CNN | 1.37 | 1.62 | 1.37 | 1.51 | 1.60 | 1.26 | 0.74 | 1.06 | 0.95 | 99.87 | 99.40 | 99.58 |
| TCN | 2.01 | 2.53 | 1.95 | 2.21 | 2.33 | 2.18 | 1.15 | 1.30 | 1.28 | 98.75 | 98.47 | 97.53 |
| BiLSTM | 0.88 | 1.10 | 1.13 | 0.54 | 0.81 | 0.86 | 0.80 | 0.96 | 0.98 | 99.96 | 99.91 | 99.91 |
| GRU | 0.85 | 1.70 | 1.73 | 0.78 | 1.59 | 1.43 | 0.69 | 1.50 | 1.50 | 99.92 | 99.17 | 99.32 |
| Transformer | 0.48 | 1.01 | 1.03 | 0.32 | 0.98 | 0.85 | 0.33 | 0.84 | 0.86 | 99.98 | 99.94 | 99.94 |
| 模型 | CoordAtt | Shape-IoU | 时间/ms | |
|---|---|---|---|---|
| YOLOv11-Seg | × | × | 86.90 | 65.85 |
| √ | × | 88.02 | 66.32 | |
| × | √ | 88.31 | 66.69 | |
| √ | √ | 90.79 | 67.70 |
Tab.5 Ablation results
| 模型 | CoordAtt | Shape-IoU | 时间/ms | |
|---|---|---|---|---|
| YOLOv11-Seg | × | × | 86.90 | 65.85 |
| √ | × | 88.02 | 66.32 | |
| × | √ | 88.31 | 66.69 | |
| √ | √ | 90.79 | 67.70 |
| 模型 | |||
|---|---|---|---|
| FCN | 89.56 | 91.03 | 80.93 |
| Lraspp | 92.12 | 89.79 | 83.28 |
| DeepLabV3 | 93.45 | 95.31 | 85.15 |
| YOLOv5s-Seg | 93.57 | 96.46 | 84.60 |
| YOLOv11-Seg改进 | 98.54 | 99.72 | 91.26 |
Tab.6 Performance comparison of the improved YOLOv11-Seg model with other models
| 模型 | |||
|---|---|---|---|
| FCN | 89.56 | 91.03 | 80.93 |
| Lraspp | 92.12 | 89.79 | 83.28 |
| DeepLabV3 | 93.45 | 95.31 | 85.15 |
| YOLOv5s-Seg | 93.57 | 96.46 | 84.60 |
| YOLOv11-Seg改进 | 98.54 | 99.72 | 91.26 |
| 模型 | |||||
|---|---|---|---|---|---|
| MFTWP | 12.72 | 8.27 | 11.07 | 89.76 | |
| 109.83 | 83.67 | 94.96 | -7.99 | ||
| 8.97 | 6.85 | 8.03 | 94.33 | ||
| MFTWP-RCS | 1.69 | 1.28 | 1.40 | 99.24 | |
| 2.51 | 2.20 | 2.00 | 99.67 | ||
| 2.59 | 1.57 | 1.09 | 99.95 | ||
Tab.7 Prediction results of MFTWP model with and without RCS
| 模型 | |||||
|---|---|---|---|---|---|
| MFTWP | 12.72 | 8.27 | 11.07 | 89.76 | |
| 109.83 | 83.67 | 94.96 | -7.99 | ||
| 8.97 | 6.85 | 8.03 | 94.33 | ||
| MFTWP-RCS | 1.69 | 1.28 | 1.40 | 99.24 | |
| 2.51 | 2.20 | 2.00 | 99.67 | ||
| 2.59 | 1.57 | 1.09 | 99.95 | ||
| 模型 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CNN | 9.3 | 11.6 | 16.6 | 1.12 | 1.35 | 2.18 | 4.4 | 6.1 | 8.7 | 99.86 | 99.70 | 99.51 |
| TCN | 26.7 | 27.2 | 48.9 | 54.36 | 35.73 | 27.95 | 21.6 | 24.0 | 36.4 | 98.75 | 98.47 | 97.53 |
| BiLSTM | 6.5 | 9.4 | 20.1 | 0.94 | 1.25 | 2.27 | 4.4 | 5.3 | 11.2 | 99.93 | 99.79 | 99.37 |
| GRU | 10.9 | 10.3 | 13.6 | 1.62 | 1.92 | 2.82 | 6.8 | 6.4 | 9.6 | 99.81 | 99.77 | 99.66 |
| Transformer | 4.4 | 5.8 | 6.6 | 0.85 | 0.94 | 1.19 | 2.9 | 3.3 | 4.3 | 99.97 | 99.93 | 99.92 |
Tab.8 Performance metrics of tool wear prediction model
| 模型 | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CNN | 9.3 | 11.6 | 16.6 | 1.12 | 1.35 | 2.18 | 4.4 | 6.1 | 8.7 | 99.86 | 99.70 | 99.51 |
| TCN | 26.7 | 27.2 | 48.9 | 54.36 | 35.73 | 27.95 | 21.6 | 24.0 | 36.4 | 98.75 | 98.47 | 97.53 |
| BiLSTM | 6.5 | 9.4 | 20.1 | 0.94 | 1.25 | 2.27 | 4.4 | 5.3 | 11.2 | 99.93 | 99.79 | 99.37 |
| GRU | 10.9 | 10.3 | 13.6 | 1.62 | 1.92 | 2.82 | 6.8 | 6.4 | 9.6 | 99.81 | 99.77 | 99.66 |
| Transformer | 4.4 | 5.8 | 6.6 | 0.85 | 0.94 | 1.19 | 2.9 | 3.3 | 4.3 | 99.97 | 99.93 | 99.92 |
| 模型 | 数据集 | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Transformer | 0.0237 | 0.0191 | 0.1452 | 0.0631 | 0.0822 | 0.1843 | 0.0129 | 0.0201 | 0.1465 |
| CNN | 0.6219 | 1.3425 | 0.4993 | ||||||
| BiLSTM | 0.6850 | 0.7012 | 0.6095 | ||||||
Tab.9 Model prediction time
| 模型 | 数据集 | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Transformer | 0.0237 | 0.0191 | 0.1452 | 0.0631 | 0.0822 | 0.1843 | 0.0129 | 0.0201 | 0.1465 |
| CNN | 0.6219 | 1.3425 | 0.4993 | ||||||
| BiLSTM | 0.6850 | 0.7012 | 0.6095 | ||||||
| [1] | LINS R G, GUERREIRO B, MARQUES de ARAUJO P R, et al. In-process Tool Wear Measurement System Based on Image Analysis for CNC Drilling Machines[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(8): 5579-5588. |
| [2] | 钱海章, 张强, 李帅. “十四五”规划下中国制造供给能力及发展路径思考[J]. 数量经济技术经济研究, 2022, 39(1): 28-50. |
| QIAN Haizhang, ZHANG Qiang, LI Shuai. Research on Development Path of China's Intelligent Manufacturing Supply Capacity under Background of 14th Five-Year Plan[J]. The Journal of Quantitative & Technical Economics, 2022, 39(1): 28-50. | |
| [3] | 刘强. 数控机床发展历程及未来趋势[J]. 中国机械工程, 2021, 32(7): 757-770. |
| LIU Qiang. Development History and Future Trends of Numerical Control Machine Tools[J]. China Mechanical Engineering, 2021, 32(7): 757-770. | |
| [4] | 李维刚, 叶欣, 赵云涛, 等. 基于改进YOLOv3算法的带钢表面缺陷检测[J]. 电子学报, 2020, 48(7): 1284-1292. |
| LI Weigang, YE Xin, ZHAO Yuntao, et al. Strip Steel Surface Defect Detection Based on Improved YOLOv3 Algorithm[J]. Acta Electronica Sinica, 2020, 48(7): 1284-1292. | |
| [5] | 曹大理, 孙惠斌, 张纪铎, 等. 基于卷积神经网络的刀具磨损在线监测[J]. 计算机集成制造系统, 2020, 26(1): 74-80. |
| CAO Dali, SUN Huibin, ZHANG Jiduo, et al. In-process Tool Condition Monitoring Based on Convolution Neural Network[J]. Computer Integrated Manufacturing Systems, 2020, 26(1): 74-80. | |
| [6] | 秦奥苹. 基于机器视觉的刀具磨损在机自动检测系统研究[D]. 成都:西南交通大学, 2021. |
| QIN Aoping. Research on On-machine Automatic Detection System of Tool Wear Based on Machine Vision[D]. Chengdu:Southwest Jiaotong University, 2021. | |
| [7] | 张春霖, 周婷婷, 胡天亮, 等. 刀具切削变工况数字孪生模型构建方法[J]. 计算机集成制造系统, 2023, 29(6): 1852-1866. |
| ZHANG Chunlin, ZHOU Tingting, HU Tianliang, et al. Construction Method of Digital Twin Model for Cutting Tools under Variable Working Conditions[J]. Computer Integrated Manufacturing Systems, 2023, 29(6): 1852-1866. | |
| [8] | MARANI M, ZEINALI M, SONGMENE V, et al. Tool Wear Prediction in High-speed Turning of a Steel Alloy Using Long Short-term Memory Modelling[J]. Measurement, 2021, 177: 109329. |
| [9] | 何彦, 凌俊杰, 王禹林, 等. 基于长短时记忆卷积神经网络的刀具磨损在线监测模型[J]. 中国机械工程, 2020, 31(16): 1959-1967. |
| HE Yan, LING Junjie, WANG Yulin, et al. In-process Tool Wear Monitoring Model Based on LSTM-CNN[J]. China Mechanical Engineering, 2020, 31(16): 1959-1967. | |
| [10] | 朱锟鹏, 黄称意, 李俊. 刀具磨损状态的多步向前智能预测[J]. 计算机集成制造系统, 2024, 30(9): 3038-3049. |
| ZHU Kunpeng, HUANG Chengyi, LI Jun. Multi-step Forward Intelligent Prediction of Tool Wear Condition[J]. Computer Integrated Manufacturing Systems, 2024, 30(9): 3038-3049. | |
| [11] | 张贺, 邵琪越, 薄翠梅. 基于注意力机制混合网络模型的刀具磨损监测[J/OL]. 控制工程, 1-8 [2025-03-29]. |
| ZHANG He, SHAO Qiyue, BO Cuimei. Tool Wear Monitoring Based on a Hybrid Network Model with Attention Mechanism[J/OL]. Control Engineering of China, 1-8 [2025-03-29]. | |
| [12] | 张宇杰, 蔡乐才, 成奎, 等. 改进YOLOv5金属表面缺陷检测方法[J]. 四川轻化工大学学报(自然科学版), 2022, 35(4): 32-41. |
| ZHANG Yujie, CAI Lecai, CHENG Kui, et al. An Improved YOLOv5 Method for the Detection of Metal Surface Defects[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2022, 35(4): 32-41. |
| [1] | TANG Donglin, YANG Zhou, CHENG Heng, LIU Mingxuan, ZHOU Li, DING Chao. Metal Defect Image Recognition Method Based on Shallow CNN Fusion Transformer [J]. China Mechanical Engineering, 2022, 33(19): 2298-2305,2316. |
| [2] | HE Yan1;LING Junjie1;WANG Yulin2;LI Yufeng1;WU Pengcheng1;XIAO Zhen1. In-process Tool Wear Monitoring Model Based on LSTM-CNN [J]. China Mechanical Engineering, 2020, 31(16): 1959-1967. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||