China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (9): 2057-2067.DOI: 10.3969/j.issn.1004-132X.2025.09.018
Mingfan LI1,2(
), Long YANG3,4, Sheng LI5, Huan GUO6, Guoqiang FU3,4(
)
Received:2024-08-13
Online:2025-09-25
Published:2025-10-15
Contact:
Guoqiang FU
李明范1,2(
), 杨龙3,4, 李晟5, 郭欢6, 付国强3,4(
)
通讯作者:
付国强
作者简介:李明范,男,1976 年生,博士、高级工程师。研究方向为机电一体化产品开发、传感与检测技术。E-mail:Leesapper@163.com基金资助:CLC Number:
Mingfan LI, Long YANG, Sheng LI, Huan GUO, Guoqiang FU. Thermal Image Input-based ResNet Method for Thermal Error Modeling of Machine Tool Spindles[J]. China Mechanical Engineering, 2025, 36(9): 2057-2067.
李明范, 杨龙, 李晟, 郭欢, 付国强. 以热图像为输入的基于ResNet的机床主轴热误差建模方法[J]. 中国机械工程, 2025, 36(9): 2057-2067.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.09.018
| 实验序号 | 固定转速/ (r·min-1) | 实验时长/h | 热图像采样频率/ min-1 |
|---|---|---|---|
| 2000-a | 2000 | 4 | 0.5 |
| 2000-b | |||
| 2000-c | |||
| 3000-a | 3000 | ||
| 3000-b | |||
| 3000-c | |||
| 4000-a | 4000 | ||
| 4000-b | |||
| 4000-c |
Tab.1 Experimental conditions setting
| 实验序号 | 固定转速/ (r·min-1) | 实验时长/h | 热图像采样频率/ min-1 |
|---|---|---|---|
| 2000-a | 2000 | 4 | 0.5 |
| 2000-b | |||
| 2000-c | |||
| 3000-a | 3000 | ||
| 3000-b | |||
| 3000-c | |||
| 4000-a | 4000 | ||
| 4000-b | |||
| 4000-c |
| 训练轮数N | 最大残差 | MAE |
|---|---|---|
| 50 | 8.7982 | 1.0625 |
| 100 | 4.6753 | 0.6158 |
| 150 | 1.8097 | 0.4184 |
Tab.3 Regression model metrics for different epoches
| 训练轮数N | 最大残差 | MAE |
|---|---|---|
| 50 | 8.7982 | 1.0625 |
| 100 | 4.6753 | 0.6158 |
| 150 | 1.8097 | 0.4184 |
| 温度传感器 | T1 | T2 | T3 | T4 | T6 |
|---|---|---|---|---|---|
| 相关系数R | 0.9269 | 0.8692 | 0.8571 | 0.9310 | 0.8767 |
Tab.4 Correlation coefficients between temperature variables and thermal deformation
| 温度传感器 | T1 | T2 | T3 | T4 | T6 |
|---|---|---|---|---|---|
| 相关系数R | 0.9269 | 0.8692 | 0.8571 | 0.9310 | 0.8767 |
| 模型 | 最大残差 | RMSE | MAE |
|---|---|---|---|
| ResNet | 5 | 1.65 | 0.84 |
| GoogLeNet | 7 | 2.35 | 1.42 |
| VGGNet | 6 | 2.39 | 1.76 |
Tab.5 Errors of different models at 2000 r/min
| 模型 | 最大残差 | RMSE | MAE |
|---|---|---|---|
| ResNet | 5 | 1.65 | 0.84 |
| GoogLeNet | 7 | 2.35 | 1.42 |
| VGGNet | 6 | 2.39 | 1.76 |
转速/ (r·min-1) | 模型 | 最大残差/μm | RMSE/μm | MAE/μm |
|---|---|---|---|---|
| 3000 | ResNet | 6 | 1.72 | 0.98 |
| GoogLeNet | 7 | 2.31 | 1.53 | |
| VGGNet | 7 | 2.41 | 1.58 | |
| 4000 | ResNet | 6 | 1.66 | 0.93 |
| GoogLeNet | 7 | 2.43 | 1.85 | |
| VGGNet | 6 | 2.52 | 1.77 |
Tab.6 Errors of different models at 3000 r/min and 4000 r/min
转速/ (r·min-1) | 模型 | 最大残差/μm | RMSE/μm | MAE/μm |
|---|---|---|---|---|
| 3000 | ResNet | 6 | 1.72 | 0.98 |
| GoogLeNet | 7 | 2.31 | 1.53 | |
| VGGNet | 7 | 2.41 | 1.58 | |
| 4000 | ResNet | 6 | 1.66 | 0.93 |
| GoogLeNet | 7 | 2.43 | 1.85 | |
| VGGNet | 6 | 2.52 | 1.77 |
| 模型 | 最大残差 | RMSE | MAE |
|---|---|---|---|
| ResNet | 4.64 | 1.59 | 1.05 |
| GoogLeNet | 6.17 | 2.38 | 1.68 |
| VGGNet | 6.31 | 2.41 | 1.85 |
Tab.7 Regression model results at 2000 r/min
| 模型 | 最大残差 | RMSE | MAE |
|---|---|---|---|
| ResNet | 4.64 | 1.59 | 1.05 |
| GoogLeNet | 6.17 | 2.38 | 1.68 |
| VGGNet | 6.31 | 2.41 | 1.85 |
| 模型 | 最大残差 | RMSE | MAE |
|---|---|---|---|
| ResNet | 5.75 | 1.68 | 1.07 |
| GoogLeNet | 6.93 | 2.44 | 1.65 |
| VGGNet | 7.38 | 2.51 | 1.65 |
Tab.8 Regression model results at 3000 r/min
| 模型 | 最大残差 | RMSE | MAE |
|---|---|---|---|
| ResNet | 5.75 | 1.68 | 1.07 |
| GoogLeNet | 6.93 | 2.44 | 1.65 |
| VGGNet | 7.38 | 2.51 | 1.65 |
| 模型 | 最大残差 | RMSE | MAE |
|---|---|---|---|
| ResNet | 5.95 | 1.73 | 1.25 |
| GoogLeNet | 6.37 | 2.40 | 1.83 |
| VGGNet | 6.16 | 2.52 | 1.95 |
Tab.9 Regression model results at 4000 r/min
| 模型 | 最大残差 | RMSE | MAE |
|---|---|---|---|
| ResNet | 5.95 | 1.73 | 1.25 |
| GoogLeNet | 6.37 | 2.40 | 1.83 |
| VGGNet | 6.16 | 2.52 | 1.95 |
| 模型 | 最大残差 | RMSE | MAE |
|---|---|---|---|
| ResNet | 5 | 1.69 | 1.24 |
| GoogLeNet | 8 | 2.59 | 2.04 |
| VGGNet | 7 | 2.64 | 2.04 |
Tab.10 Errors of different regression models in Y-direction at 2000 r/min
| 模型 | 最大残差 | RMSE | MAE |
|---|---|---|---|
| ResNet | 5 | 1.69 | 1.24 |
| GoogLeNet | 8 | 2.59 | 2.04 |
| VGGNet | 7 | 2.64 | 2.04 |
| [1] | 黄智, 刘永超, 邓涛, 等. 一种五轴数控机床热误差建模方法[J]. 中国机械工程, 2020, 31(13):1529-1538. |
| HUANG Zhi, LIU Yongchao, DENG Tao, et al. A Method for Thermal Error Modeling of FAMT[J]. China Mechanical Engineering, 2020, 31(13):1529-1538. | |
| [2] | MAYR J, JEDRZEJEWSKI J, UHLMANN E, et al. Thermal Issues in Machine Tools[J]. CIRP Annals, 2012, 61(2):771-791. |
| [3] | 史和轩. 基于实验建模法的机床直线轴几何-热误差综合建模[D]. 吉林:东北电力大学, 2023. |
| SHI Hexuan. Comprehensive Geometric-Thermal Error Modeling of Machine Tool Linear Axes Based on Experimental Modeling Method [D]. Jilin:Northeast Dianli University, 2023. | |
| [4] | 许可. WL1600重型数控卧车热误差分析及其补偿研究[D]. 成都:电子科技大学, 2016. |
| XU Ke. Thermal Error Analysis and Compensation Research of WL1600 Heavy-duty CNC Horizontal Lathe [D]. Chengdu:University of Electronic Science and Technology of China, 2016. | |
| [5] | LI Guolong, TANG Xiaodong, LI Zheyu, et al. The Temperature-sensitive Point Screening for Spindle Thermal Error Modeling Based on IBGOA-feature Selection[J]. Precision Engineering, 2022, 73:140-152. |
| [6] | LIU Yuchi, LI Kunying, TSAI Y C. Spindle Thermal Error Prediction Based on LSTM Deep Learning for a CNC Machine Tool[J]. Applied Sciences, 2021, 11(12):5444. |
| [7] | CHENG Qiang, QI Zhuo, ZHANG Guojun, et al. Robust Modelling and Prediction of Thermally Induced Positional Error Based on Grey Rough Set Theory and Neural Networks[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(5):753-764. |
| [8] | 罗勇, 邵珠峰, 王立平, 等. NL201HA数控卧式车床X轴热误差建模及补偿[J]. 清华大学学报(自然科学版), 2021, 61(1):28-35. |
| LUO Yong, SHAO Zhufeng, WANG Liping, et al. X-axis Thermal Error Modeling and Compensation for an NL201HA CNC Horizontal Lathe[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(1):28-35. | |
| [9] | HAN Yue, DENG Xiaolei, CHEN Yushen, et al. Multi-verse Optimizer for Thermal Error Modeling Approach of Spindle System Based on Thermal Image[J]. Advances in Mechanical Engineering, 2024, 16(6):16878132241254181. |
| [10] | YANG Zeqing, LIU Beibei, ZHANG Yanrui, et al. Intelligent Sensing of Thermal Error of CNC Machine Tool Spindle Based on Multi-source Information Fusion[J]. Sensors, 2024, 24(11):3614. |
| [11] | 赵海涛, 冯伟, 周海, 等. 基于热误差敏感度图的温度关键点选择方法[J]. 上海交通大学学报, 2015, 49(5):725-729. |
| ZHAO Haitao, FENG Wei, ZHOU Hai, et al. Method for Selection of Temperature Key Points Based on Thermal Error Sensitivity Images and Genetic Optimization[J]. Journal of Shanghai Jiao Tong University, 2015, 49(5):725-729. | |
| [12] | WU Chengyang, XIANG Sitong, XIANG Wansheng. Thermal Error Modeling of Rotary Axis Based on Convolutional Neural Network[J]. Journal of Manufacturing Science and Engineering, 2021, 143(5):051013. |
| [13] | WU Chengyang, XIANG Sitong, XIANG Wansheng. Spindle Thermal Error Prediction Approach Based on Thermal Infrared Images:a Deep Learning Method[J]. Journal of Manufacturing Systems, 2021, 59:67-80. |
| [14] | 房芳. 基于热图像的数控机床主轴热误差鲁棒建模技术研究[D]. 宁波:宁波大学, 2020. |
| FANG Fang. Research on Robust Thermal Error Modeling Technology of CNC Machine Tool Spindles Based on Thermal Images [D]. Ningbo:Ningbo University, 2020. | |
| [15] | 马剑超, 项四通. 基于改进卷积神经网络的数控机床旋转轴热误差建模方法[J]. 宁波大学学报(理工版), 2023, 36(2):108-115. |
| MA Jianchao, XIANG Sitong. Thermal Error Modeling Method for Rotary Axis of CNC Machine Tool Based on Improved Convolutional Neural Network[J]. Journal of Ningbo University (Natural Science & Engineering Edition), 2023, 36(2):108-115. | |
| [16] | HE K, ZHANG X, REN S,et al. Deep Residual Learning for Image Recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas, 2016:770-778. |
| [17] | JALIL A J, REDA N M. Infrared Thermal Image Gender Classifier Based on the Deep ResNet Model[J]. Advances in Human-Computer Interaction, 2022, 2022(1):3852054. |
| [18] | CHANDRA S, AlMANSOOR K, CHEN Cheng, et al. Deep Learning Based Infrared Thermal Image Analysis of Complex Pavement Defect Conditions Considering Seasonal Effect[J]. Sensors, 2022, 22(23):9365. |
| [1] | DANG Xu, LIU Tao, YAN Min, AN Feng. Optimization of Precison Milling Combined Parameters and Precise Prediction of Milling Forces for Thin-wall Complex Variable Cross-section Scrolls [J]. China Mechanical Engineering, 2024, 35(11): 1963-1970. |
| [2] | HE Zhiyi, SHAO Haidong, CHENG Junsheng, YANG Yu, . A Fault Diagnosis Method of Mechanical Equipment Based on FKCH-TM and Thermal Images#br# [J]. China Mechanical Engineering, 2021, 32(12): 1456-1461,1478. |
| [3] | ZHANG Yucun1;CUI Yan1;FU Xianbin2;SUN Shixuan3. On|line Temperature Detection Method in Core Area of Friction Stir Welding [J]. China Mechanical Engineering, 2019, 30(14): 1658-1664,1672. |
| [4] | HU Yaguang, WANG Xuanguo, DUAN Aiqin, MA Xuyi. Influences of Welding Parameters on Temperature Field Characteristics during Laser Welding of 304 Stainless Steels [J]. China Mechanical Engineering, 2017, 28(11): 1367-1374. |
| [5] | Deng Zhaohui , Liu Tao, Liao Lipeng, Liu Wei, Wan Linlin, Peng Keli. Experimental Investigation on Temperature in Camshaft High Speed Grinding [J]. China Mechanical Engineering, 2016, 27(20): 2717-2722. |
| [6] | Wei Wei, Yu Jianwei, Wang Lifei, Gao Genghu, Yu Xiaofen. Research on Wideband Emissivity of End-face Sliding Friction Pair Interfaces [J]. China Mechanical Engineering, 2016, 27(17): 2298-2303. |
| [7] | Tong Chengbiao, , Zhou Zhixiong, Zhou Yuan. Parameter Optimization of Support Vector Regression and Its Applications to Pressure Prediction of Intelligent Pressure Reduce Valves [J]. China Mechanical Engineering, 2016, 27(14): 1931-1935. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||