China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (8): 1784-1795.DOI: 10.3969/j.issn.1004-132X.2025.08.014
Zhaohui DENG1,3, Rongjin ZHUO2,3(), Jingqiang CHEN2,3, Jimin GE2,3, Lishu LYU2,3, Wei LIU2,3
Received:
2024-08-06
Online:
2025-08-25
Published:
2025-09-18
Contact:
Rongjin ZHUO
邓朝晖1,3, 卓荣锦2,3(), 陈敬强2,3, 葛吉民2,3, 吕黎曙2,3, 刘伟2,3
通讯作者:
卓荣锦
作者简介:
邓朝晖,男,1968年生,教授、博士研究生导师。研究方向为先进加工技术、智能制造。发表论文200余篇。
基金资助:
CLC Number:
Zhaohui DENG, Rongjin ZHUO, Jingqiang CHEN, Jimin GE, Lishu LYU, Wei LIU. Research on Mechanism Analysis and Online Monitoring System of Camshaft High-speed Grinding Burns[J]. China Mechanical Engineering, 2025, 36(8): 1784-1795.
邓朝晖, 卓荣锦, 陈敬强, 葛吉民, 吕黎曙, 刘伟. 凸轮轴高速磨削烧伤机理分析与在线监测系统研究[J]. 中国机械工程, 2025, 36(8): 1784-1795.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.08.014
水平 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
砂轮线速度vs/(m·s-1) | 60 | 85 | 110 | 135 | 160 |
工件转速vw/(r·min-1) | 30 | 60 | 90 | 120 | 150 |
磨削深度ap/mm | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 |
Tab.1 Orthogonal experimental parameters of grinding burn
水平 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
砂轮线速度vs/(m·s-1) | 60 | 85 | 110 | 135 | 160 |
工件转速vw/(r·min-1) | 30 | 60 | 90 | 120 | 150 |
磨削深度ap/mm | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 |
组号 | 烧伤程度 | CHV/MPa | ap/mm | vw / (r·min-1) | vs/(m·s-1) |
---|---|---|---|---|---|
1 | 无 | 578.9 | 0.05 | 30 | 60 |
2 | 一般 | 513.6 | 0.15 | 60 | 60 |
3 | 严重 | 457.3 | 0.25 | 90 | 60 |
4 | 一般 | 525.6 | 0.10 | 120 | 60 |
5 | 一般 | 492.6 | 0.20 | 150 | 60 |
6 | 严重 | 459.5 | 0.25 | 30 | 85 |
7 | 一般 | 518.4 | 0.10 | 60 | 85 |
8 | 一般 | 481.7 | 0.20 | 90 | 85 |
9 | 无 | 573.8 | 0.05 | 120 | 85 |
10 | 一般 | 495.3 | 0.15 | 150 | 85 |
11 | 严重 | 453.6 | 0.20 | 30 | 110 |
12 | 无 | 552.7 | 0.05 | 60 | 110 |
13 | 一般 | 485.5 | 0.15 | 90 | 110 |
14 | 严重 | 442.9 | 0.25 | 120 | 110 |
15 | 一般 | 547.3 | 0.10 | 150 | 110 |
16 | 一般 | 510.9 | 0.15 | 30 | 135 |
17 | 一般 | 484.9 | 0.25 | 60 | 135 |
18 | 一般 | 524.4 | 0.10 | 90 | 135 |
19 | 严重 | 468.1 | 0.20 | 120 | 135 |
20 | 无 | 524.2 | 0.05 | 150 | 135 |
21 | 无 | 564.3 | 0.10 | 30 | 160 |
22 | 一般 | 470.6 | 0.20 | 60 | 160 |
23 | 无 | 571.1 | 0.05 | 90 | 160 |
24 | 一般 | 491.3 | 0.15 | 120 | 160 |
25 | 严重 | 438.0 | 0.25 | 150 | 160 |
513.60 | 513.44 | 560.14 | |||
505.74 | 508.04 | 536.00 | |||
496.40 | 504.00 | 499.32 | |||
502.50 | 500.34 | 473.32 | |||
507.06 | 499.48 | 456.52 | |||
Ri | 17.20 | 13.96 | 103.62 |
Tab.2 Orthogonal experimental results and range analysis
组号 | 烧伤程度 | CHV/MPa | ap/mm | vw / (r·min-1) | vs/(m·s-1) |
---|---|---|---|---|---|
1 | 无 | 578.9 | 0.05 | 30 | 60 |
2 | 一般 | 513.6 | 0.15 | 60 | 60 |
3 | 严重 | 457.3 | 0.25 | 90 | 60 |
4 | 一般 | 525.6 | 0.10 | 120 | 60 |
5 | 一般 | 492.6 | 0.20 | 150 | 60 |
6 | 严重 | 459.5 | 0.25 | 30 | 85 |
7 | 一般 | 518.4 | 0.10 | 60 | 85 |
8 | 一般 | 481.7 | 0.20 | 90 | 85 |
9 | 无 | 573.8 | 0.05 | 120 | 85 |
10 | 一般 | 495.3 | 0.15 | 150 | 85 |
11 | 严重 | 453.6 | 0.20 | 30 | 110 |
12 | 无 | 552.7 | 0.05 | 60 | 110 |
13 | 一般 | 485.5 | 0.15 | 90 | 110 |
14 | 严重 | 442.9 | 0.25 | 120 | 110 |
15 | 一般 | 547.3 | 0.10 | 150 | 110 |
16 | 一般 | 510.9 | 0.15 | 30 | 135 |
17 | 一般 | 484.9 | 0.25 | 60 | 135 |
18 | 一般 | 524.4 | 0.10 | 90 | 135 |
19 | 严重 | 468.1 | 0.20 | 120 | 135 |
20 | 无 | 524.2 | 0.05 | 150 | 135 |
21 | 无 | 564.3 | 0.10 | 30 | 160 |
22 | 一般 | 470.6 | 0.20 | 60 | 160 |
23 | 无 | 571.1 | 0.05 | 90 | 160 |
24 | 一般 | 491.3 | 0.15 | 120 | 160 |
25 | 严重 | 438.0 | 0.25 | 150 | 160 |
513.60 | 513.44 | 560.14 | |||
505.74 | 508.04 | 536.00 | |||
496.40 | 504.00 | 499.32 | |||
502.50 | 500.34 | 473.32 | |||
507.06 | 499.48 | 456.52 | |||
Ri | 17.20 | 13.96 | 103.62 |
因素 | Sig. | 均方 | F值 | 自由度f | 离差平方和 |
---|---|---|---|---|---|
vs | 0.983 | 198.679 | 0.094 | 4 | 794.716 |
vw | 0.988 | 167.054 | 0.078 | 4 | 668.216 |
ap | 0.000 | 9234.496 | 29.292 | 4 | 36 937.984 |
Tab.3 Analysis for orthogonal experiment
因素 | Sig. | 均方 | F值 | 自由度f | 离差平方和 |
---|---|---|---|---|---|
vs | 0.983 | 198.679 | 0.094 | 4 | 794.716 |
vw | 0.988 | 167.054 | 0.078 | 4 | 668.216 |
ap | 0.000 | 9234.496 | 29.292 | 4 | 36 937.984 |
特征 | 表达式 |
---|---|
重心频率 | |
均方频率 | |
频率偏度 | |
频率标准差 | |
频率方差 | |
频率均方根值 | |
频率峭度 |
Tab.4 Signal features
特征 | 表达式 |
---|---|
重心频率 | |
均方频率 | |
频率偏度 | |
频率标准差 | |
频率方差 | |
频率均方根值 | |
频率峭度 |
小波基 | sym | morl | db | haar | meyr | coif |
---|---|---|---|---|---|---|
DFT | 可以 | 不可 | 可以 | 可以 | 可以 | 可以 |
紧支性 | 有 | 有 | 有 | 有 | 有 | 有 |
CWT | 可以 | 可以 | 可以 | 可以 | 可以 | 可以 |
对称性 | 近似 | 对称 | 近似 | 对称 | 对称 | 近似 |
正交性 | 有 | 无 | 有 | 有 | 有 | 有 |
消失矩 | N | / | N | 1 | / | 2N |
Tab.5 Common wavelet bases
小波基 | sym | morl | db | haar | meyr | coif |
---|---|---|---|---|---|---|
DFT | 可以 | 不可 | 可以 | 可以 | 可以 | 可以 |
紧支性 | 有 | 有 | 有 | 有 | 有 | 有 |
CWT | 可以 | 可以 | 可以 | 可以 | 可以 | 可以 |
对称性 | 近似 | 对称 | 近似 | 对称 | 对称 | 近似 |
正交性 | 有 | 无 | 有 | 有 | 有 | 有 |
消失矩 | N | / | N | 1 | / | 2N |
AE 信号 | 振动信号 | ||||
---|---|---|---|---|---|
排名 | 特征 | 权重得分 | 排名 | 特征 | 权重得分 |
1 | 功率谱重心频率 | 0.1388 | 1 | 中频RMS | 0.0210 |
2 | 功率谱均方频率 | 0.13499 | 2 | 功率谱均方频率 | 0.0184 |
3 | 高频能量占比 | 0.1325 | 3 | 功率谱矩心 | 0.0183 |
4 | 高频RMS | 0.1209 | 4 | 中频标准差 | 0.0114 |
5 | 中频RMS | 0.1081 | 5 | 幅值谱重心频率 | 0.0049 |
6 | 功率谱频率方差 | 0.1067 | 6 | 高频RMS | -0.0076 |
7 | 幅值谱重心频率 | 0.0961 | 7 | 高频标准差 | -0.0081 |
8 | 高频标准差 | 0.0788 | 8 | 高频能量占比 | -0.0114 |
9 | 高频节点/低频节点的能量比值 | 0.0723 | 9 | 高频峭度 | -0.0135 |
10 | 中频标准差 | 0.0643 | 10 | 中频能量占比 | -0.0195 |
11 | 低频RMS | 0.0490 | |||
12 | 低频偏度 | 0.0334 | |||
13 | 中频能量占比 | 0.0321 | |||
14 | 低频峭度 | 0.0272 | |||
15 | 低频标准差 | 0.0266 |
Tab.6 Weight ranking of AE and vibration signal features
AE 信号 | 振动信号 | ||||
---|---|---|---|---|---|
排名 | 特征 | 权重得分 | 排名 | 特征 | 权重得分 |
1 | 功率谱重心频率 | 0.1388 | 1 | 中频RMS | 0.0210 |
2 | 功率谱均方频率 | 0.13499 | 2 | 功率谱均方频率 | 0.0184 |
3 | 高频能量占比 | 0.1325 | 3 | 功率谱矩心 | 0.0183 |
4 | 高频RMS | 0.1209 | 4 | 中频标准差 | 0.0114 |
5 | 中频RMS | 0.1081 | 5 | 幅值谱重心频率 | 0.0049 |
6 | 功率谱频率方差 | 0.1067 | 6 | 高频RMS | -0.0076 |
7 | 幅值谱重心频率 | 0.0961 | 7 | 高频标准差 | -0.0081 |
8 | 高频标准差 | 0.0788 | 8 | 高频能量占比 | -0.0114 |
9 | 高频节点/低频节点的能量比值 | 0.0723 | 9 | 高频峭度 | -0.0135 |
10 | 中频标准差 | 0.0643 | 10 | 中频能量占比 | -0.0195 |
11 | 低频RMS | 0.0490 | |||
12 | 低频偏度 | 0.0334 | |||
13 | 中频能量占比 | 0.0321 | |||
14 | 低频峭度 | 0.0272 | |||
15 | 低频标准差 | 0.0266 |
样本 | 样本数 |
---|---|
训练样本 | 严重烧伤:9 一般烧伤:20 无烧伤:11 |
测试样本 | 严重烧伤:3 一般烧伤:4 无烧伤:3 |
Tab.7 Training and test sample distribution
样本 | 样本数 |
---|---|
训练样本 | 严重烧伤:9 一般烧伤:20 无烧伤:11 |
测试样本 | 严重烧伤:3 一般烧伤:4 无烧伤:3 |
[1] | SAIO K, MORIMOTO S, ARIKABE T, et al. Development of Ultra-high Speed, High-accuracy Profile Grinding Machine [J]. Komatsu Technical Report,2017, 63(170): 9-17. |
[2] | 邓朝晖, 刘涛, 廖礼鹏, 等. 凸轮轴高速磨削温度的实验研究[J]. 中国机械工程, 2016, 27(20): 2717-2722. |
DENG Zhaohui, LIU Tao, LIAO Lipeng, et al. Experimental Investigation on Temperature in Camshaft High Speed Grinding[J]. China Mechanical Engineering, 2016, 27(20): 2717-2722. | |
[3] | 朱正德. 工件磨削烧伤及其检测、评定方法简析[J]. 柴油机设计与制造, 2013, 19(2): 36-39. |
ZHU Zhengde. Analysis on Inspection and Evaluation of Burnt Part Due to Grinding[J]. Design and Manufacture of Diesel Engine, 2013, 19(2): 36-39. | |
[4] | 金滩, 易军. 高速高效磨削传热过程建模与数值分析方法[M]. 北京: 机械工业出版社, 2016: 12-38. |
JIN Tan, YI Jun. Modeling and Numerical Analysis Method of Heat Transfer Process in High-speed and High-efficiency Grinding[M]. Beijing: China Machine Press, 2016: 12-38. | |
[5] | WAN Linlin, DENG Zhaohui, LIU Tao, et al. Experimental Investigation of Grinding Temperature and Burn in High Speed Deep Camshaft Grinding[J]. International Journal of Abrasive Technology, 2016, 7(4): 321. |
[6] | WANG Jianjian, FENG Pingfa, ZHA Tijian. Process Monitoring in Precision Cylindrical Traverse Grinding of Slender Bar Using Acoustic Emission Technology[J]. Journal of Mechanical Science and Technology, 2017, 31(2): 859-864. |
[7] | LAURO C H, BRANDÃO L C, BALDO D, et al. Monitoring and Processing Signal Applied in Machining Processes-a Review[J]. Measurement, 2014, 58: 73-86. |
[8] | LIU Qiang, CHEN Xun, GINDY N. Investigation of Acoustic Emission Signals under a Simulative Environment of Grinding Burn[J]. International Journal of Machine Tools and Manufacture, 2006, 46(3/4): 284-292. |
[9] | CHEN Xun, GRIFFIN J, LIU Qiang. Mechanical and Thermal Behaviours of Grinding Acoustic Emission[J]. International Journal of Manufacturing Technology and Management, 2007, 12(1/2/3): 184. |
[10] | YANG Zhensheng, YU Zhonghua, XIE Chao, et al. Application of Hilbert-Huang Transform to Acoustic Emission Signal for Burn Feature Extraction in Surface Grinding Process[J]. Measurement, 2014, 47: 14-21. |
[11] | 朱欢欢, 迟玉伦, 闻章, 等. 断续磨削表面烧伤机理与在线监测方法研究[J]. 表面技术, 2021, 50(9): 379-389. |
ZHU Huanhuan, CHI Yulun, WEN Zhang, et al. Research on Burn Mechanism of Intermittent Grinding Surface and Online Monitoring Method[J]. Surface Technology, 2021, 50(9): 379-389. | |
[12] | GAO Zheyu, LIN Jing, WANG Xiufeng, et al. Grinding Burn Detection Based on Cross Wavelet and Wavelet Coherence Analysis by Acoustic Emission Signal[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1): 68. |
[13] | GUO Weicheng, LI Beizhi, SHEN Shouguo, et al. An Intelligent Grinding Burn Detection System Based on Two-stage Feature Selection and Stacked Sparse Autoencoder[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(5): 2837-2847. |
[14] | HÜBNER H B, DUARTE M A V, Da SILVA R B. Automatic Grinding Burn Recognition Based on Time-frequency Analysis and Convolutional Neural Networks[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(7): 1833-1849. |
[15] | YANG Zhensheng, YU Zhonghua. Experimental Study of Burn Classification and Prediction Using Indirect Method in Surface Grinding of AISI 1045 Steel[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(9): 2439-2449. |
[16] | 袁子皓. 基于多传感器信息融合的刀具磨损状态监测系统研究[D]. 洛阳: 河南科技大学, 2014. |
YUAN Zihao. Research on Tool Wear Condition Monitoring System Based on Multi-sensor Information Fusion[D]. Luoyang: Henan University of Science and Technology, 2014. | |
[17] | 李尧, 刘强. 基于小波包及Hilbert-Huang变换的数控铣削颤振诊断技术[J]. 计算机集成制造系统, 2015, 21(1): 204-216. |
LI Yao, LIU Qiang. Chatter Identification in CNC Milling Based on Wallet Packet and Hilbert-Huang Transform[J]. Computer Integrated Manufacturing Systems, 2015, 21(1): 204-216. | |
[18] | 王宗炼, 任会兰, 宁建国. 基于小波变换降噪的声发射源定位方法[J]. 振动与冲击, 2018, 37(4): 226-232. |
WANG Zonglian, REN Huilan, NING Jianguo. Acoustic Emission Source Location Based on Wavelet Transform De-noising[J]. Journal of Vibration and Shock, 2018, 37(4): 226-232. | |
[19] | 孙林, 陈雨生, 徐久成. 基于改进ReliefF的多标记特征选择算法[J]. 山东大学学报(理学版), 2022, 57(4): 1-11. |
SUN Lin, CHEN Yusheng, XU Jiucheng. Multilabel Feature Selection Algorithm Based on Improved ReliefF[J]. Journal of Shandong University (Natural Science), 2022, 57(4): 1-11. | |
[20] | ZHUO Rongjin, DENG Zhaohui, CHEN Bing, et al. Research on Online Intelligent Monitoring System of Band Saw Blade Wear Status Based on Multi-feature Fusion of Acoustic Emission Signals[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(7): 4533-4548. |
[21] | 王晶. 基于DGA特征量优选与GA-SVM的变压器故障诊断模型[D]. 杭州: 中国计量大学, 2021. |
WANG Jing. Transformer Based on DGA Feature Quantity Optimization and GA-SVM Fault Diagnosis Model. Hangzhou: China University of Metrology, 2021. |
[1] | ZHANG Peng, CAO Zeze, KOU Shuqing, WANG Tao, GUO Jibao, LI Jinzhe, WU Lei. Research on Joint Strength and Radial Knurling Connection Mechanism of Assembled Camshafts [J]. China Mechanical Engineering, 2022, 33(06): 664-671. |
[2] |
LIU Tao, DENG Zhaohui, GE Zhiguang, LYU Lishu, LIU Wei, PENG Keli .
Implementation of Intelligent Decision Cloud Service for Camshaft Grinding Processes
[J]. China Mechanical Engineering, 2020, 31(07): 773-780.
|
[3] | ZHANG Haicong;LIU Tonggang;LI Linning;QIU Xianming. Experimental Study on On-line Monitoring Device for Wear Particles [J]. China Mechanical Engineering, 2018, 29(01): 30-35. |
[4] | ZHANG Qiang, LIU Zhiheng, WANG Haijian, HUANG Chuanhui, Nguyen Viet Tuyen. On-line Monitoring of Pick's Wear Degrees Based on BP Neural Network [J]. China Mechanical Engineering, 2017, 28(09): 1062-1068. |
[5] | Deng Zhaohui , Liu Tao, Liao Lipeng, Liu Wei, Wan Linlin, Peng Keli. Experimental Investigation on Temperature in Camshaft High Speed Grinding [J]. China Mechanical Engineering, 2016, 27(20): 2717-2722. |
[6] | Yang Shouzhi, Deng Zhaohui, Liu Wei, Li Jian, Peng Keli. Contour Error Analysis and Compensation for Camshaft CNC Grinding [J]. China Mechanical Engineering, 2016, 27(16): 2230-2235. |
[7] | Guo Li, Jiang Zhishun, Shang Zhentao. Experimental Research on HVOF Sprayed WC-17Co Coating at High Speed Grinding Mechanism [J]. China Mechanical Engineering, 2016, 27(10): 1279-1286. |
[8] | Yang Shouzhi, Deng Zhaohui, Wu Guiyun, Liu Wei, Wan Linlin, Peng Keli. Modeling and Experimental Research of Workpiece Spindle Speed Optimization in CNC Camshaft Grinding [J]. China Mechanical Engineering, 2016, 27(05): 652-657. |
[9] | Chen Guiping, Wen Guilin. Parameterized Modeling and Modal Analysis of High Speed Grinding Machine Structure [J]. China Mechanical Engineering, 2015, 26(18): 2415-2418. |
[10] | Wan Linlin, Deng Zhaohui, Huang Qiang, Liu Zhijian. On-machine Measurement Technology of Camshaft High Speed NC Grinding [J]. China Mechanical Engineering, 2015, 26(13): 1747-1751. |
[11] | Tian Lin, Fu Yucan, Yang Lu, Zhao Jiayan. Experimental Studies for High Speed Grinding of Titanium Alloy Ti6Al4V [J]. China Mechanical Engineering, 2014, 25(22): 3056-3060. |
[12] | FENG Can-Bei, XIE Gui-Zhi, CHENG Xiao-Min, GUO Li, CHANG Zhen-Chao. #br# #br# Process Test Research on Stainless Steel in Ultra-high Speed Grinding [J]. China Mechanical Engineering, 2013, 24(3): 322-326. |
[13] | Li Jing;Zhang Wei;Shen Nanyan;Wang Xinling. Study on Profile Reconstruction Method for Concave Curve of Locomotive Engine Camshaft in Non-circular Grinding [J]. China Mechanical Engineering, 2013, 24(20): 2836-2839. |
[14] | FAN Jin-Wei-1, MEI Qin-1, BANG Gao-2, JIN Ai-Hui-1, NING Kun-1, LI Hai-Chong-1. Research on Geometric Error Modeling and Parameter Identification Technology Theory of Automotive Camshaft Grinding Based on Multi-body System Theory [J]. China Mechanical Engineering, 2013, 24(16): 2216-2222. |
[15] | CHEN Jian-Yi-1, XU Xi-Feng-2. Study on Specific Grinding Energy of Alumina Grinding with a Brazed Diamond Wheel in High Speed Regime [J]. China Mechanical Engineering, 2013, 24(07): 890-894. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||