China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (06): 1300-1313.DOI: 10.3969/j.issn.1004-132X.2025.06.017
Previous Articles Next Articles
JIANG Feng1,2*;HU Ronghui1;DENG Jiedong1;ZHANG Tian1;HUANG Guoqin1,2;XU Yangli1,2;LI Yousheng3;LIU Chao4
Online:
2025-06-25
Published:
2025-08-04
姜峰1,2*;胡荣辉1;邓杰东1;张添1;黄国钦1,2;徐仰立1,2;李友生3;刘超4
作者简介:
姜峰*,男,1981 年生,教授、博士研究生导师。研究方向为精密超精密加工技术、切削过程数值仿真技术、刀具设计技术。E-mail:jiangfeng@hqu.edu.cn。
基金资助:
CLC Number:
JIANG Feng1, 2, HU Ronghui1, DENG Jiedong1, ZHANG Tian1, HUANG Guoqin1, 2, XU Yangli1, 2, LI Yousheng3, LIU Chao4. Development Trends and Prospects of Additive Manufacturing Technology for Cemented Carbide Cutting Tools[J]. China Mechanical Engineering, 2025, 36(06): 1300-1313.
姜峰1, 2, 胡荣辉1, 邓杰东1, 张添1, 黄国钦1, 2, 徐仰立1, 2, 李友生3, 刘超4. 硬质合金刀具增材制造技术发展趋势和展望[J]. 中国机械工程, 2025, 36(06): 1300-1313.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.06.017
[1]中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[N].人民日报, 2021-03-13(001). Outline of the 14th Five-Year Plan for National Economic and Social Development and the Long-Range Objectives through the Year 2035 of the Peoples Republic of China[N]. Peoples Daily, 2021-03-13(001). [2]刘松瑶.加快建设质量强国推动高质量发展[N].中国质量报, 2023-08-30(T05). LIU Songyao. Accelerate Building a Quality Power to Promote High-quality Development[N]. China Quality Daily, 2023-08-30(T05). [3]工业和信息化部装备工业一司.《机械行业稳增长工作方案(2023—2024年)》解读[N]. 新能源汽车报,2023-09-11(004). Ministry of Industry and Information Technology of the Peoples Republic of China, Department of Equipment Industry I. Interpretation of the “Work Plan for Stable Growth in the Machinery Industry(2023—2024) ”[N]. New Energy Vehicle Weekly,2023-09-11(004). [4]YU H, HAN Z, ZHANG J, et al. Bionic Design of Tools in Cutting:Reducing Adhesion, Abrasion or Friction[J]. Wear, 2021, 482/483:203955. [5]YANG H, FENG P, ZHANG J, et al. Toward Understanding the Mechanism in Ultrasonic Cutting of Silica Aerogel Composites Using a Bionic Micro-serrated Tool[J]. Journal of Manufacturing Processes,2023, 101, 480-500. [6]WEI Hong, CHEN Guangjun, CHEN Zhuang, et al.Progress on Bionic Textured Cutting Tools:a Review and Prospects[J].Journal of Bionic Engineering, 2023,21:19-55. [7]KORENKOVS A, GERINS E, KROMANIS A. The Design and Performance of Internally Cooled Cutting Tools for Turning:a Literature Review[J]. Latvian Journal of Physics and Technical Sciences,2023, 60(5), 73-94. [8]BIERMANN D, OEZKAYA E. CFD Simulation for Internal Coolant Channel Design of Tapping Tools to Reduce Tool Wear[J].CIRP Annals,2017, 66(1), 109-112. [9]GAN Y, WANG Y, LIU K, et al. The Development and Experimental Research of a Cryogenic Internal Cooling Turning Tool[J]. Journal of Cleaner Production,2021, 319, 128787. [10]RANJAN P, HIREMATH S. Role of Textured Tool in Improving Machining Performance:a Review[J]. Journal of Manufacturing Processes,2019,43, 47-73. [11]KAWASEGI N, KAWASHIMA T, MORITA N, et al. Effect of Texture Shape on Machining Performance of Textured Diamond Cutting Tool[J]. Precision Engineering,2019, 60, 21-27. [12]SUGIHARA T, ENOMOTO T. Performance of Cutting Tools with Dimple Textured Surfaces:a Comparative Study of Different Texture Patterns[J]. Precision Engineering,2017, 49, 52-60. [13]JI W, ZOU B, ZHANG S, et al. Design and Fabrication of Gradient Cermet Composite Cutting Tool, and Its Cutting Performance[J]. Journal of Alloys and Compounds,2018, 732, 25-31. [14]YI M, WANG J, XIAO G, et al. Effect of Gradient Design on the Mechanical Property and Friction Performance of Nano Self-lubricating Ceramic Cutting Tool Material[J]. Ceramics International,2022, 48(5), 7045-7055. [15]NOVK P. Advanced Powder Metallurgy Technologies[J]. Materials,2020, 13(7), 1742. [16]DENG Y, CHEN W, LI B, et al. Physical Vapor Deposition Technology for Coated Cutting Tools:a Review[J]. Ceramics International,2020, 46(11), 18373-18390. [17]GANESHKUMAR S, VENKATESH S, PARANTHAMAN P, et al. Performance of Multilayered Nanocoated Cutting Tools in High-speed Machining:a Review[J]. International Journal of Photoenergy,2022, 1:5996061. [18]BOBZIN K, BRGELMANN T, MAIER H J, et al. Influence of Residual Stresses in Hard Tool Coatings on the Cutting Performance[J]. Journal of Manufacturing Processes,2021, 69, 340-350. [19]ARMSTRONG M, MEHRABI H, NAVEED N. An Overview of Modern Metal Additive Manufacturing Technology[J]. Journal of Manufacturing Processes, 2022, 84, 1001-1029. [20]ERTAS A, STROUD A. Additive Manufacturing Research and Applications[J]. Metals,2022, 12(4), 634. [21]SALMI M. Additive Manufacturing Processes in Medical Applications[J]. Materials,2021, 14(1), 191. [22]YAO L, RAMESH A, XIAO Z, et al. Multimetal Research in Powder Bed Fusion:a Review[J]. Materials,2023, 16(12), 4287. [23]GAO B, ZHAO H, PENG L, et al. A Review of Research Progress in Selective Laser Melting(SLM)[J]. Micromachines,2022, 14(1), 57. [24]WANG D, SONG C, YANG Y, et al. Research on the Redesign of Precision Tools and Their Manufacturing Process Based on Selective Laser Melting(SLM)[J]. Rapid Prototyping Journal,2016, 22(1), 104-114. [25]WANG J, TANG H. Review on Metals Additively Manufactured by SEBM[J]. Materials Technology, 2015,31(2):1753555715Y. [26]KRNER C. Additive Manufacturing of Metallic Components by Selective Electron Beam Melting:a Review[J]. International Materials Reviews,2016, 61(5):361-377. [27]PADMAKUMAR M. Additive Manufacturing of Tungsten Carbide Hardmetal Parts by Selective Laser Melting(SLM), Selective Laser Sintering(SLS) and Binder Jet 3D Printing(BJ3DP)Techniques[J]. Lasers in Manufacturing and Materials Processing,2020, 7(3):338-371. [28]郑敏利,何春生,杨树财,等. 一种基于3D打印技术的微织构硬质合金球头铣刀制备方法:CN106363168A[P].2016-12-02. ZHENG Minli, HE Chunsheng, YANG Shucai, et al. A Preparation Method of Micro-textured Cemented Carbide Ball-end Milling Cutter Based on 3D Printing Technology:CN106363168A[P].2016-12-02. [29]雷尼绍.KOMET GROUP使用金属3D打印切削刀具[J]. 工具技术,2017,51(11):17. RENISHAW. The KOMET GROUP Uses Metal 3D Printing for Cutting Tools[J]. Tool Engineering, 2017, 51(11):17. [30]GEOFFREY M,RAMKUMAR R,MARK B. Improvements in or Relating to the Control of a Chain of Machines, Including an Additive Manufacturing Machine, in the Manufacture of a Workpiece:WO2016GB53036[P].2017-04-06. [31]刘旭东. 金属粉末床激光熔融路径规划与控制研究[D].长沙:湖南大学, 2019. LIU Xudong. Research on Path Planning and Control of Laser Melting for Metal Powder Bed[D]. Changsha: Hunan University, 2019. [32]郭瑜,龙学湖,刘敏,等. 粉末床熔融增材制造用金属粉末的研究现状[J]. 中国建材科技,2021, 30(1): 6-10. GUO Yu, LONG Xuehu, LIU Min, et al. Research Status of Metal Powder for Powder Bed Fusion Additive Manufacturing[J]. China Building Materials Science and Technology, 2021, 30(1), 6-10. [33]XING M, WANG H, ZHAO Z, et al. Additive Manufacturing of Cemented Carbides Inserts with High Mechanical Performance[J]. Materials Science and Engineering:A,2022, 861:144350. [34]JOSEF T, TIM S, TIMO B, et al. Laser Sintering of Tungsten Carbide Cutter Shafts with Integrated Cooling Channels[C]∥ Proceeding of the 3rd International Conference on Process in Additive Manufacturing. Singapore:Pro-AM Conference Papers, 2018:297-302. [35]UHLMANN E, BERGMANN A, BOLZ R. Manufacturing of Carbide Tools by Selective Laser Melting[J]. Procedia Manufacturing,2018, 21: 765-773. [36]KONYASHIN I, HINNERS H, RIES B, et al. Additive Manufacturing of WC-13%Co by Selective Electron Beam Melting:Achievements and Challenges[J]. International Journal of Refractory Metals and Hard Materials,2019, 84:105028. [37]SOCHALSKI-KOLBUS L M, PAYZANT E A, CORNWELL P A, et al. Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering[J]. Metallurgical and Materials Transactions A,2015, 46:1419-1432. [38]顾海峰. 金属粉末注射成形技术发展探究[J]. 中国金属通报, 2023(1):10-13. GU Haifeng. Exploration of the Development of Metal Powder Injection Molding Technology[J]. China Metal Bulletin, 2023(1):10-13. [39]USSELMANN M, BANSMANN J, KUEHNE A J C. Switchable Polyacrylonitrile-copolymer for Melt-processing and Thermal Carbonization 3D Printing of Carbon Supercapacitor Electrodes with High Capacitance[J]. Advanced Materials 2023, 35(6):2208484. [40]ZHAO Z, LIU R, CHEN J, et al. Additive Manufacturing of Cemented Carbide Using Analogous Powder Injection Molding Feedstock[J]. International Journal of Refractory Metals and Hard Materials,2023, 111:106095. [41]JUCAN O D, GDLEAN R V, CHICINAS H F, et al. Study on the Indirect Selective Laser Sintering(SLS) of WC-Co/PA12 Powders for the Manufacturing of Cemented Carbide Parts[J]. International Journal of Refractory Metals and Hard Materials,2021, 96: 105498. [42]LENGAUER W, DURETEK I, FRST M, et al. Fabrication and Properties of Extrusion-based 3D-printed Hardmetal and Cermet Components[J]. International Journal of Refractory Metals and Hard Materials,2019, 82:141-149. [43]WOLFE T A, SHAH R M, Prough K C, et al. Binder Jetting 3D Printed Cemented Carbide:Mechanical and Wear Properties of Medium and Coarse Grades[J]. International Journal of Refractory Metals and Hard Materials, 2023, 113:106197. [44]TADAYYON G, SESET K, PARLE E, et al.Additive Manufacturing of Diamond Cutting Tools-pushing the Boundaries of 3D Printing[C]∥Irish Polymers and Materials Conference.Ireland,2017:2017-08-31. [45]CHEN C, HUANG B, LIU Z, et al. Material Extrusion Additive Manufacturing of WC-9Co Cemented Carbide[J]. Additive Manufacturing,2024, 86:104203. [46]LIU J, LU Z, SHI Y, et al. Investigation into Manufacturing Injection Mold via Indirect Selective Laser Sintering[J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(1/4), 155-163. [47]RUBIANO BUITRAGO J D, GIL PLAZAS A F, BOYAC MENDIVELSO L A, et al. Fused Filament Fabrication of WC-10Co Hardmetals:a Study on Binder Formulations and Printing Variables[J]. Journal of Manufacturing and Materials Processing,2024, 8(3):118. [48]HERZOG D, SEYDA V, WYCISK E, et al. Additive Manufacturing of Metals[J]. Acta Materialia,2016, 117:371-392. [49]ZHANG T, TAN Y, XU Y, et al. A Thermal-initiated Monomer Binder Enhancing Green Strength with Low Binder Saturation for Binder Jetting Additive Manufacturing of Cemented Carbide[J]. International Journal of Refractory Metals and Hard Materials,2024, 118:106494. [50]LEE S W, KIM Y W, JANG K M, et al. Phase Control of WC-Co Hardmetal Using Additive Manufacturing Technologies[J]. Powder Metallurgy,2022, 65(1):13-21. [51]CHEN C, HUANG B, LIU Z, et al. Additive Manufacturing of WC-Co Cemented Carbides:Process, Microstructure, and Mechanical Properties[J]. Additive Manufacturing,2023, 63:103410. [52]KO K H, KANG H G, HU Y H, et al. Effects of Heat Treatment on the Microstructure, Residual Stress, and Mechanical Properties of Co-Cr Alloy Fabricated by Selective Laser Melting[J]. Journal of the Mechanical Behavior of Biomedical Materials,2022, 126:105051. [53]XING M, WANG H, ZHAO Z, et al. SLM Printing of Cermet Powders:Inhomogeneity from Atomic Scale to Microstructure[J]. Ceramics International,2022, 48(20):29892-29899. [54]UHLMANN E, BERGMANN A, GRIDIN W, et al. Investigation on Additive Manufacturing of Tungsten Carbide-cobalt by Selective Laser Melting[J]. Procedia CIRP,2015, 35: 8-15. [55]CHEN J, HUANG M, FANG Z, et al. Microstructure Analysis of High Density WC-Co Composite Prepared by One Step Selective Laser Melting[J]. International Journal of Refractory Metals and Hard Materials,2019, 84:104980. [56]GUSAROV A V, PAVLOV M, SMUROV I. Residual Stresses at Laser Surface Remelting and Additive Manufacturing[J]. Physics Procedia,2011, 12:248-254. [57]ENNETI R K, PROUGH K C. Wear Properties of Sintered WC-12%Co Processed via Binder Jet 3D Printing(BJ3DP)[J]. International Journal of Refractory Metals and Hard Materials ,2019, 78:228-232. [58]LIU J, CHEN J, LIU B, et al. Microstructure Evolution of WC-20Co Cemented Carbide during Direct Selective Laser Melting[J]. Powder Metallurgy,2020, 63(5), 359-366. [59]LIU J, CHEN J, LU Y, et al. WC Grain Growth Behavior during Selective Laser Melting of WC-Co Cemented Carbides[J]. Acta Metallurgica Sinica(English Letters),2023, 36(6):949-961. [60]王迪,黄锦辉,谭超林,等.激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10):1221-1235. WANG Di, HUANG Jinhui, TAN Chaolin, et al. Effect of Cyclic Thermal Input on Microstructure and Properties during Laser Additive Manufacturing[J]. Acta Metallurgica Sinica, 2022, 58(10):1221-1235. [61]LIU D, YUE W, KANG J, et al. Effects of Different Substrates on the Formability and Densification Behaviors of Cemented Carbide Processed by Laser Powder Bed Fusion[J]. Materials,2021, 14(17):5027. [62]WATRING D S, BENZING J T, HRABE N, et al. Effects of Laser-energy Density and Build Orientation on the Structure-property Relationships in as-Built Inconel 718 Manufactured by Laser Powder Bed Fusion[J]. Additive Manufacturing,2020, 36:101425. [63]KUMAR S, CZEKANSKI A. Optimization of Parameters for SLS of WC-Co[J]. Rapid Prototyping Journal,2017, 23(6):1202-1211. [64]KUMAR S. Process Chain Development for Additive Manufacturing of Cemented Carbide[J]. Journal of Manufacturing Processes, 2018, 34:121-130. [65]IBE H, KATO Y, YAMADA J, et al. Controlling WC/Co Two-phase Microstructure of Cemented Carbides Additive-manufactured by Laser Powder Bed Fusion:Effect of Powder Composition and Post Heat-treatment[J]. Materials & Design,2021, 210:110034. [66]GOKULDOSS P K, KOLLA S, ECKERT J. Additive Manufacturing Processes:Selective Laser Melting, Electron Beam Melting and Binder Jetting-selection Guidelines[J]. Materials, 2017, 10(6):672. [67]ENNETI R K, PROUGH K C. Effect of Binder Saturation and Powder Layer Thickness on the Green Strength of the Binder Jet 3D Printing(BJ3DP) WC-12%Co Powders[J]. International Journal of Refractory Metals and Hard Materials ,2019, 84:104991. [68]MOSTAFAEI A, DE VECCHIS P R, KIMES K A, et al. Effect of Binder Saturation and Drying Time on Microstructure and Resulting Properties of Sinter-HIP Binder-jet 3D-printed WC-Co Composites[J]. Additive Manufacturing, 2021, 46:102128. [69]XU Z, MEENASHISUNDARAM G K, NG F L. High-density WC-45Cr-18Ni Cemented Hard Metal Fabricated with Binder Jetting Additive Manufacturing[J]. Virtual and Physical Prototyping,2022, 17(1):92-104. [70]WOLFE T, SHAH R, PROUGH K, et al. Coarse Cemented Carbide Produced via Binder Jetting 3D Printing[J]. International Journal of Refractory Metals and Hard Materials,2023, 110:106016. [71]ZHANG X, GUO Z, CHEN C, et al. Additive Manufacturing of WC-20Co Components by 3D Gel-printing[J]. International Journal of Refractory Metals and Hard Materials,2018, 70:215-223. [72]XIANG Z, LI Z, CHANG F, et al. Effect of Heat Treatment on the Microstructure and Properties of Ultrafine WC-Co Cemented Carbide[J]. Metals,2019, 9(12):1302. [73]SKORDARIS G, BOUZAKIS K D, STERGIOUDI F, et al. Cutting Performance Improvement of MTCVD Coated Cemented Carbide Inserts via Appropriate Heat Treatment[J]. CIRP Annals,2020, 69(1):45-48. [74]FRIES S, VOGELPOTH A, KALETSCH A, et al. Influence of Post Heat Treatment on Microstructure and Fracture Strength of Cemented Carbides Manufactured Using Laser-based Additive Manufacturing[J]. International Journal of Refractory Metals and Hard Materials,2023, 111:106085. [75]AGYAPONG J, CZEKANSKI A, BOAKYE YIADOM S, et al. WITHDRAWN:Effect of Heat Treatment on Microstructural Evolution and Properties of Cemented Carbides(WC-17Co) Processed by Selective Laser Sintering[J]. Materials Science and Engineering:A ,2019:138291. [76]K A, BRICN D, PRCHA V, et al. The Potential for Heat Treating Cemented Carbides[J]. Manufacturing Technology,2018, 18(4):600-604. [77]FANG Z Z, WANG H, KUMAR V. Coarsening, Densification, and Grain Growth during Sintering of Nano-sized Powders:a Perspective[J]. International Journal of Refractory Metals and Hard Materials,2017, 62:110-117. [78]JIA C, SUN L, TANG H, et al. Hot Pressing of Nanometer WC-Co Powder[J].International Journal of Refractory Metals and Hard Materials,2007, 25(1):53-56. [79]MIODOWNIK M, DERBY B. Hot Isostatic Press Joining of Cemented Carbides[J]. Journal of the American Ceramic Society,1999, 82(12):3616-3618. [80]ZHOU X, XU Z, WANG K, et al. One-step Sinter-HIP Method for Preparation of Functionally Graded Cemented Carbide with Ultrafine Grains[J]. Ceramics International ,2016, 42(4):5362-5367. [81]YOUNG B, HEELAN J, LANGAN S, et al. Novel Characterization Techniques for Additive Manufacturing Powder Feedstock[J]. Metals, 2021, 11(5):720. [82]ZACHERT C, LIU H, LAKNER T, et al. CFD Simulation to Optimize the Internal Coolant Channels of an Additively Manufactured Milling Tool[J]. Procedia CIRP,2021, 102:234-239. [83]WANG D, YU C, MA J, et al. Densification and Crack Suppression in Selective Laser Melting of Pure Molybdenum[J]. Materials Design,2017, 129, 44-52. [84]DANISH M, GUPTA M K, GHAZALI S M, et al. Tool Wear and Surface Roughness Characteristics in Sustainable Machining of Additively Manufactured Titanium Alloys[J]. Journal of Materials Research and Technology, 2024, 30:2955-2967. |
[1] | JIANG Shijie1, 2, XU Zizhao1, LI Shuguang1, WANG Fei1, HUANG Xuzhen3. Study on Forming and Mechanics Properties of 17-4PH Stainless Steel Parts Fabricated by MFFF Technique [J]. China Mechanical Engineering, 2025, 36(03): 593-603. |
[2] | WU Menghua1, JIANG Bingchun1, XIAO Yuqing2, JIA Weiping2. Effects of Magnetic Fields on Growth Pattern of Three-dimensional Microstructures in MLED-AM [J]. China Mechanical Engineering, 2024, 35(11): 2035-2042. |
[3] | ZHANG Luo1, LIU Mingming2, CHEN Ruimin1, DAN Peng1, GUO Nan1. Simulation and Experimental Study of Deformation Control of Large-size and Thin-wall Parts by SLM [J]. China Mechanical Engineering, 2024, 35(09): 1653-1658,1709. |
[4] | ZHANG Zhen, GUO Ce, HU Caiji, ZHENG Wei. Research on Self-repairing Structure Design and Repair Performance Based on Additive Manufacturing Technology [J]. China Mechanical Engineering, 2024, 35(01): 144-151. |
[5] | XUE Kai, GUO Runlan, HUANG Huiyang, HUANG Hua. Structural Optimization Method of Additive Manufacturing Model Based on Point Cloud Data [J]. China Mechanical Engineering, 2023, 34(20): 2482-2488. |
[6] | KE Qingdi, LUO Junyou, JIANG Shouzhi, HUANG Haihong, . Construction of Ultrasonic-Stress Inversion Model Based on Distribution States of Coating Materials [J]. China Mechanical Engineering, 2023, 34(18): 2230-2237. |
[7] | LIU Yingjie, HU Qiang, ZHAO Xinming, ZHANG Shaoming, HUANG Shuai, WANG Yonghui. Research on Topology Optimization and Additive Manufacturing of Automotive Engine Connection Brackets [J]. China Mechanical Engineering, 2023, 34(18): 2238-2267. |
[8] | WANG Lei, WU Yuliang, ZHAO Jiyuan, LU Bingheng, . Research Progresses of Finishing Technology for Inner Channel of Additive Manufacturing Parts [J]. China Mechanical Engineering, 2023, 34(07): 757-769. |
[9] | LI Hongyu, HUANG Xiangming, MING Yang, LI Xiyang, ZENG Qing, ZHOU Dongdong. Simulation and Experimental Study of Magnetic Field-assisted Shear Thickening Fluid Polishing for Cemented Carbide Blades [J]. China Mechanical Engineering, 2023, 34(06): 650-659. |
[10] | FANG Xuewei, JIANG Xiao, WANG Zhe, WU Xiaokang, HUANG Ke. Forming Process Optimization of Wire and Arc Additive Manufactured High-strength Steel ER120S-G [J]. China Mechanical Engineering, 2023, 34(02): 218-225. |
[11] | HAN Guangchao, YANG Jiakai, YE Zejiu, XU Linhong, ZHANG Haiou, YANG Haitao. Research on Longitudinal-Torsion Compound Ultrasonic Vibration Dry Milling Characteristics for AlMgSc Alloys Formed by Arc Micro-casting and Forging Additive Manufacturing [J]. China Mechanical Engineering, 2022, 33(24): 2971-2979,2989. |
[12] | MENG Liang, ZHONG Mingzhe, LI Wenbiao, XIA Liang, GAO Tong, ZHU Jihong, ZHANG Weihong, . Topology Optimization Design of Aero-engine External System Brackets for Additive Manufacturing [J]. China Mechanical Engineering, 2022, 33(23): 2822-2832. |
[13] | ZOU Wuyou, DU Chun, AI Jianping, SHAN Bin. Optimization Design of TiO2 Porous Ceramic Structures for Catalyst Carrier Applications [J]. China Mechanical Engineering, 2022, 33(23): 2833-2843. |
[14] | JIAO Chen, CHAO Long, ZHU Lei, SHEN Lida, LIANG Huixin, DAI Ning, WANG Changjiang, SUN Jun. Design and Manufacture Method of Bionic Porous Structures for Orthopedic Implants [J]. China Mechanical Engineering, 2022, 33(23): 2844-2850. |
[15] | HE Zhicheng, YANG Dingding, JIANG Chao, WU Yi, JIANG Hexin. Strength-constrainted Topology Optimization Based on Additive Manufacturing Anisotropy [J]. China Mechanical Engineering, 2022, 33(19): 2372-2380,2393. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||