[1]JANOCHA H, KUHNEN K. Real-time Compensation of Hysteresis and Creep in Piezoelectric Actuators[J]. Sensors and Actuators A:Physical, 2000, 79(2):83-89.
[2]LING Jie, CHEN Long, FENG Zhao, et al. Development and Test of a High Speed Pusher-type Inchworm Piezoelectric Actuator with Asymmetric Driving and Clamping Configuration[J]. Mechanism and Machine Theory, 2022, 176:104997.
[3]AN Dong, LI Ji, YANG Yixiao, et al. Compensation Method for Complex Hysteresis Characteristics on Piezoelectric Actuator Based on Separated Level-loop Prandtl-Ishlinskii Model[J]. Nonlinear Dynamics, 2022, 109(4):2479-2497.
[4]余学贵. 压电型步进式旋转精密驱动器试验研究[D]. 长春:吉林大学, 2005.
YU Xuegui. Design and Research on Precision Stepping Circumrotate Actuator Driving by Piezoelectricity[D]. Changchun:Jilin University, 2005.
[5]HASSANI V, TJAHJOWIDODO T, DO T N. A Survey on Hysteresis Modeling, Identification and Control[J]. Mechanical Systems and Signal Processing, 2014, 49(1/2):209-233.
[6]魏燕定. 压电驱动器的非线性模型及其精密定位控制研究[J]. 中国机械工程, 2004, 15(7):565-568.
WEI Yanding. Study on Non-linear Model of Piezoelectric Actuator and Accurate Positioning Control Strategy[J]. China Mechanical Engineering, 2004, 15(7):565-568.
[7]LING Jie, FENG Zhao, ZHENG Dongdong, et al. Robust Adaptive Motion Tracking of Piezoelectric Actuated Stages Using Online Neural-network-based Sliding Mode Control[J]. Mechanical Systems and Signal Processing, 2021, 150:107235.
[8]MING Min, LING Jie, FENG Zhao, et al. A Model Prediction Control Design for Inverse Multiplicative Structure Based Feedforward Hysteresis Compensation of a Piezo Nanopositioning Stage[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(11):1699-1708.
[9]郝瑞, 彭倍, 周吴. 微机电系统压电振动台迟滞补偿方法研究[J]. 中国机械工程, 2021, 32(17):2118-2124.
HAO Rui, PENG Bei, ZHOU Wu. Research on Hysteresis Compensation Method of MEMS Piezoelectric Vibratory Platforms[J]. China Mechanical Engineering, 2021, 32(17):2118-2124.
[10]胡斌梁, 陈国良. 压电陶瓷微夹钳迟滞环自适应逆控制研究[J]. 中国机械工程, 2006, 17(8):798-801.
HU Binliang, CHEN Guoliang. Study on Adaptive Inverse Control of Hysteresis in Piezoelectric Microgripper[J]. China Mechanical Engineering, 2006, 17(8):798-801.
[11]GU Guoying, ZHU Limin, SU Chunyi, et al. Modeling and Control of Piezo-actuated Nanopositioning Stages:a Survey[J]. IEEE Transactions on Automation Science and Engineering, 2016, 13(1):313-332.
[12]XIA Yanjiang, HUPPE B S, FUKAMI T. An Approach to Enlarging the Maximum Bit in Piezoelectric Digital Actuator[J]. Ferroelectrics, 1994, 160(1):331-336.
[13]XIAO Wenlei, HUAN Ji, LIU Guoxi, et al. A Digitally Linear Piezoelectric Bimorph Actuator in Open-loop Mode[J]. Applied Physics Letters, 2013, 102(12):123503.
[14]高强, 朱勇, 钱鹏飞, 等. 阵列压电叠堆驱动高速开关阀的设计与仿真分析[J]. 液压与气动, 2023, 47(9):56-62.
GAO Qiang, ZHU Yong, QIAN Pengfei, et al. Design and Simulation Analysis of a High Speedon/off Valve Actuated by Array Piezoelectric Stacks[J]. Chinese Hydraulics & Pneumatics, 2023, 47(9):56-62.
[15]崔玉国, 孙宝元, 董维杰, 等. 压电陶瓷执行器迟滞与非线性成因分析[J]. 光学精密工程, 2003, 11(3):270-275.
CUI Yuguo, SUN Baoyuan, DONG Weijie, et al. Causes for Hysteresis and Nonlinearity of Piezoelectric Ceramic Actuators[J]. Optics and Precision Engineering, 2003, 11(3):270-275.
[16]QI Chenkun, GAO Feng, LI Hanxiong, et al. An Incremental Hammerstein-like Modeling Approach for the Decoupled Creep, Vibration and Hysteresis Dynamics of Piezoelectric Actuator[J]. Nonlinear Dynamics, 2015, 82(4):2097-2118.
[17]QIN Yanding, TIAN Yanling, ZHANG Dawei, et al. A Novel Direct Inverse Modeling Approach for Hysteresis Compensation of Piezoelectric Actuator in Feedforward Applications[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(3):981-989.
[18]赵天, 杨智春, 刘昊, 等. 压电陶瓷叠层作动器迟滞蠕变非线性自适应混合补偿控制方法[J]. 航空学报, 2018, 39(12):222308.
ZHAO Tian, YANG Zhichun, LIU Hao, et al. Hysteresis and Creep Nonlinearities Modeling and Adaptive Hybrid Compensation Control of Piezoelectric Stack Actuators[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):222308.
[19]TASHAKORI S, VAZIRI V, APHALE S S. A Comparative Quantification of Existing Creep Models for Piezoactuators[C]∥Recent Trends in Wave Mechanics and Vibrations. Cham, 2023:419-426.
|