中国机械工程 ›› 2025, Vol. 36 ›› Issue (8): 1668-1682.DOI: 10.3969/j.issn.1004-132X.2025.08.003
• 机械基础工程 • 上一篇
程龙军1,3(), 刘刚1(
), 陈雷1, 李东泽2,3, 邢潇1, 崔淦1
收稿日期:
2024-10-18
出版日期:
2025-08-25
发布日期:
2025-09-18
通讯作者:
刘刚
作者简介:
程龙军,男,1989年生,高级工程师、博士研究生。研究方向为油气管道安全技术与装备等。E-mail:chenglj.qday@sinopec.com。基金资助:
Longjun CHENG1,3(), Gang LIU1(
), Lei CHEN1, Dongze LI2,3, Xiao XING1, Gan CUI1
Received:
2024-10-18
Online:
2025-08-25
Published:
2025-09-18
Contact:
Gang LIU
摘要:
油气储运过程普遍存在可燃气与空气混合的爆炸0区环境,0区风机是保障0区环境安全的重要装置。针对0区风机关键技术,分类综述了狭小受限空间燃爆规律、流场优化计算、叶轮离心应力与振动、安全轴封技术和阻爆测试领域的研究进展,并提出了五点展望:①建立0区风机燃爆测试方法是首要目标,通过搭建循环回路测试系统来评价抗爆性能;②在较狭小受限空间,风机内部旋转结构爆燃转爆轰演化规律存在差异,应通过实验与计算来揭示;③分析阻火器对流场的扰动规律,开展流场优化研究,以提升风机通气性能;④研究高转速叶轮应力分布与振动规律,提出安全应力极限与提升方法;⑤研发抗爆、导静电耐磨型轴封材料及高效轴封结构。得出以下结论:通过关键技术研究,可实现国内0区风机零的突破。
中图分类号:
程龙军, 刘刚, 陈雷, 李东泽, 邢潇, 崔淦. 爆炸0区风机关键技术研究进展及展望[J]. 中国机械工程, 2025, 36(8): 1668-1682.
Longjun CHENG, Gang LIU, Lei CHEN, Dongze LI, Xiao XING, Gan CUI. Research Progresses and Prospect of Key Technologies for Explosive Zone 0 Fans[J]. China Mechanical Engineering, 2025, 36(8): 1668-1682.
品牌 | 德国Fima | 英国Halifax | 瑞士Meidinger |
---|---|---|---|
风机图 | ![]() | ![]() | ![]() |
技术特点 | ①风机机壳与阻火器直连,具有最小的爆炸气量;②驱动型式获得防爆认证:皮带、联轴器、直驱;③转子动平衡提高操作安全性;④入口端静态密封,轴封采用涡形迷宫密封;⑤轴承配置温度监控 | ①轴封采用空气正压碳环气体密封;②出入口处安装阻火器,配置火焰捕捉器;③ 通过联轴器将电机与叶轮连接;④轴承箱配置振动监测 | ①阻火器配置温度传感器,检测异常工况和介质异常温度;②风机内部耐压设计;③集成火焰控制系统,通过温度传感器监控保证安全;④ 转速范围大,具有良好性能范围 |
表1 国外0区防爆风机技术特点
Tab. 1 Technical characteristics of foreign explosion-proof fans in zone 0
品牌 | 德国Fima | 英国Halifax | 瑞士Meidinger |
---|---|---|---|
风机图 | ![]() | ![]() | ![]() |
技术特点 | ①风机机壳与阻火器直连,具有最小的爆炸气量;②驱动型式获得防爆认证:皮带、联轴器、直驱;③转子动平衡提高操作安全性;④入口端静态密封,轴封采用涡形迷宫密封;⑤轴承配置温度监控 | ①轴封采用空气正压碳环气体密封;②出入口处安装阻火器,配置火焰捕捉器;③ 通过联轴器将电机与叶轮连接;④轴承箱配置振动监测 | ①阻火器配置温度传感器,检测异常工况和介质异常温度;②风机内部耐压设计;③集成火焰控制系统,通过温度传感器监控保证安全;④ 转速范围大,具有良好性能范围 |
图12 基于速度分布方法的设计叶型和初始叶型流场分布[59]
Fig.12 Flow field distribution of initial blade geometry and designed blade geometry based on velocity distribution method[59]
[1] | 刘世达, 王海燕, 侯栓弟, 等. 我国石化储罐VOCs安全高效深度减排、回收和热氧化技术进展[J]. 化工进展, 2024, 43(4): 2063-2076. |
LIU Shida, WANG Haiyan, HOU Shuandi, et al. Recent Advances in Safely Efficient Deep Emission Reduction, Recovery and Thermal Oxidation of VOCs from Petrochemical Storage Tanks in China[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 2063-2076. | |
[2] | 李长英, 陈明功, 盛楠, 等. 挥发性有机物处理技术的特点与发展[J]. 化工进展, 2016, 35(3): 917-925. |
LI Changying, CHEN Minggong, SHENG Nan, et al. The Characteristics and Development of Volatile Organic Compounds Treatment Technology[J]. Chemical Industry and Engineering Progress, 2016, 35(3): 917-925. | |
[3] | 李娜. 油气回收系统防爆通风机的点燃危险评估[J]. 安全、健康和环境, 2019, 19(10): 34-38. |
LI Na. Ignition Hazard Assessment of Explosion-proof Fans for Oil Vapour Recovery Units[J]. Safety Health & Environment, 2019, 19(10): 34-38. | |
[4] | 汤鹏, 梁峻, 王新华, 等. 非电气防爆安全点燃危险评定及其关键技术分析[J]. 电气防爆, 2016(2): 22-26. |
TANG Peng, LIANG Jun, WANG Xinhua, et al. Analysis of Ignition Hazard Assessment and Its Key Technology of Non Electrie Explosion-proof Safety[J]. Electric Explosion Protection, 2016(2): 22-26. | |
[5] | 陈国华, 林艺松, 王新华, 等. 基于组合赋权的防爆电气爆炸风险评估[J]. 天然气工业, 2015, 35(7): 103-109. |
CHEN Guohua, LIN Yisong, WANG Xinhua, et al. Explosion Risk Evaluation on Explosion-proof Electric Apparatus Based on Combination Weighting[J]. Natural Gas Industry, 2015, 35(7): 103-109. | |
[6] | 喻健良, 詹潇兵, 吕先舒, 等. 不同角度分叉管道内氢气-空气爆轰传播特性[J]. 爆炸与冲击, 2022, 42(12): 157-166. |
YU Jianliang, ZHAN Xiaobing, Xianshu LYU, et al. Propagation Characteristics of Hydrogen-air Detonation in Bifurcated Tubes with Different Angles[J]. Explosion and Shock Waves, 2022, 42(12): 157-166. | |
[7] | 鲍磊, 王鹏, 党茜, 等. 石化装置工业尺度管道爆轰传播实验研究[J]. 爆炸与冲击, 2021, 41(9): 145-151. |
BAO Lei, WANG Peng, DANG Qian, et al. Experimental Study on Detonation Propagation in Industrial Scale Pipelines Used in Petrochemical Plants[J]. Explosion and Shock Waves, 2021, 41(9): 145-151. | |
[8] | CHANG Xinyu, ZHANG Bo, NG H D, et al. The Effects of Pre-ignition Turbulence by Gas Jets on the Explosion Behavior of Methane-oxygen Mixtures[J]. Fuel, 2020, 277: 118190. |
[9] | CHANG Xinyu, BAI Chunhua, ZHANG Bo, et al. The Effect of Ignition Delay Time on the Explosion Behavior in Non-uniform Hydrogen-air Mixtures[J]. International Journal of Hydrogen Energy, 2022, 47(16): 9810-9818. |
[10] | CHENG Jun, ZHANG Bo, LIU Hong, et al. Experimental Study on the Effects of Different Fluidic Jets on the Acceleration of Deflagration Prior Its Transition to Detonation[J]. Aerospace Science and Technology, 2020, 106: 106203. |
[11] | CHENG Jun, ZHANG Bo, LIU Hong, et al. The Precursor Shock Wave and Flame Propagation Enhancement by CO2 Injection in a Methane-oxygen Mixture[J]. Fuel, 2021, 283: 118917. |
[12] | CHENG Jun, ZHANG Bo, DICK NG H, et al. Effects of Inert Gas Jet on the Transition from Deflagration to Detonation in a Stoichiometric Methane-oxygen Mixture[J]. Fuel, 2021, 285: 119237. |
[13] | PENG Han, HUANG Yue, DEITERDING R, et al. Effects of Jet in Crossflow on Flame Acceleration and Deflagration to Detonation Transition in Methane⁃Oxygen Mixture[J]. Combustion and Flame, 2018, 198: 69-80. |
[14] | 左哲, 姚志强, 高进东, 等. 受限空间内天然气爆炸反应过程模拟分析[J]. 天然气工业, 2015, 35(6): 131-137. |
ZUO Zhe, YAO Zhiqiang, GAO Jindong, et al. Simulation Analysis of Natural Gas Explosion within Confined Space[J]. Natural Gas Industry, 2015, 35(6): 131-137. | |
[15] | 杨石刚, 方秦, 张亚栋, 等. 非均匀混合可燃气云爆炸的数值计算方法[J]. 天然气工业, 2014, 34(6): 155-161. |
YANG Shigang, FANG Qin, ZHANG Yadong, et al. A Numerical Method of Calculating the Consequence of Heterogeneous Mixed Vapor Cloud Explosion[J]. Natural Gas Industry, 2014, 34(6): 155-161. | |
[16] | 严清华, 王淑兰, 李岳, 等. 大型球形密闭容器内可燃气体爆炸过程的数值模拟[J]. 天然气工业, 2004, 24(4): 101-103. |
YAN Qinghua, WANG Shulan, LI Yue, et al. Numeral Simulation of Flammable Gas Explosions in Large Closed Spherical Vessels[J]. Natural Gas Industry, 2004, 24(4): 101-103. | |
[17] | CAO Yong, LI Bin, GAO Kanghua. Pressure Characteristics during Vented Explosion of Ethylene-air Mixtures in a Square Vessel[J]. Energy, 2018, 151: 26-32. |
[18] | MALLARD E, CHATELIER H, ANN L. Thermal Model for Flame Propagation[J]. Annales des Mines, 1883, 8:274-618. |
[19] | URTIEW P A, OPPENHEIM A K. Experimental Observations of the Transition to Detonation in an Explosive Gas[J]. Proceedings of the Royal Society of London Series A, 1966, 295(1440): 13-28. |
[20] | SHORT M, VOELKEL S J, KESSLER D A. Flame Acceleration in a Narrow Channel with Flow Compressibility and Diverging or Converging Walls[J]. Proceedings of the Combustion Institute, 2021, 38(2): 2205-2214. |
[21] | 赵永耀. 可燃气体火焰加速及爆燃转爆轰的机理研究[D]. 北京: 北京理工大学, 2017. |
ZHAO Yongyao. Investigation on the Mechanism of Flame Acceleration and Deflagration to Detonation Transition of Combustible Gases[D]. Beijing: Beijing Institute of Technology, 2017. | |
[22] | BAUWENS C R L, BERGTHORSON J M, DOROFEEV S B. Experimental Investigation of Spherical-flame Acceleration in Lean Hydrogen-air Mixtures[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7691-7697. |
[23] | PHYLAKTOU H N, ANDREWS G E, HERATH P. Fast Flame Speeds and Rates of Pressure Rise in the Initial Period of Gas Explosions in Large L/D Cylindrical Enclosures[J]. Journal of Loss Prevention in the Process Industries, 1990, 3(4): 355-364. |
[24] | 王金贵, 何伟杰, 张成名, 等. N2对甲烷-空气预混气体爆炸火焰传播稳定性的影响[J]. 福州大学学报(自然科学版), 2023, 51(4): 582-588. |
WANG Jingui, HE Weijie, ZHANG Chengming, et al. Influence of N2 on the Flame Stability of Methane-air Premixed Gas[J]. Journal of Fuzhou University (Natural Science Edition), 2023, 51(4): 582-588. | |
[25] | ZHAO Xinyu, WANG Jiabao, GAO Longkun, et al. Flame Acceleration and Onset of Detonation in Inhomogeneous Mixture of Hydrogen-air in an Obstructed Channel[J]. Aerospace Science and Technology, 2022, 130: 107944. |
[26] | WANG Jiabao, ZHAO Xinyu, FAN Liangyi, et al. Effects of the Quantity and Arrangement of Reactive Jet Obstacles on Flame Acceleration and Transition to Detonation: a Numerical Study[J]. Aerospace Science and Technology, 2023, 137: 108269. |
[27] | LI Min, LIU Dandan, SHEN Ting, et al. Effects of Obstacle Layout and Blockage Ratio on Flame Acceleration and DDT in Hydrogen-air Mixture in a Channel with an Array of Obstacles[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5650-5662. |
[28] | HISKEN H, ENSTAD G A, MIDDHA P, et al. Investigation of Concentration Effects on the Flame Acceleration in Vented Channels[J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 447-459. |
[29] | HAN Shixin, YU Minggao, YANG Xufeng, et al. Effects of Obstacle Position and Hydrogen Volume Fraction on Premixed Syngas-air Flame Acceleration[J]. International Journal of Hydrogen Energy, 2020, 45(53): 29518-29532. |
[30] | ZHANG Ying, LI Qi, TANG Kaixuan, et al. Surface Inclination Effects on Heat Transfer during Flame Spread Acceleration Based on FireFOAM[J]. Case Studies in Thermal Engineering, 2022, 32: 101905. |
[31] | ZHAO Mingbin, LIU Dandan, LI Min, et al. Effect of Wall Roughness on Flame Acceleration and Deflagration-to-detonation Transition in a Narrow Channel[J]. International Journal of Hydrogen Energy, 2024, 51: 880-893. |
[32] | LI Tao, HUO Jiepeng, LI Xing, et al. Effects of Curvature on Flame Acceleration in Micro Channels[J]. Combustion and Flame, 2022, 242: 112168. |
[33] | LI Tao, WANG Xiaohan, XU Baopeng, et al. An Efficient Approach to Achieve Flame Acceleration and Transition to Detonation[J]. Physics of Fluids, 2021, 33(5): 056103. |
[34] | 程龙军. 爆炸0区防爆风机内部流场模拟及试验研究[J]. 流体机械, 2021, 49(5): 7-13. |
CHENG Longjun. Simulation and Experimental Study of Flow Field of Explosion-proof Fan in Explosion Zone 0[J]. Fluid Machinery, 2021, 49(5): 7-13. | |
[35] | HASSAN A S. Influence of the Volute Design Parameters on the Performance of a Centrifugal Compressor of an Aircraft Turbocharger[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2007, 221(5): 695-704. |
[36] | HAGELSTEIN D, HILLEWAERT K, van den BRAEMBUSSCHE R A, et al. Experimental and Numerical Investigation of the Flow in a Centrifugal Compressor Volute[J]. Journal of Turbomachinery, 2000, 122(1): 22-31. |
[37] | LU F A, QI D T, WANG X J, et al. A Numerical Optimization on the Vibroacoustics of a Centrifugal Fan Volute[J]. Journal of Sound and Vibration, 2012, 331(10): 2365-2385. |
[38] | WORSTER R C. The Flow in Volutes and Its Effect on Centrifugal Pump Performance[J]. Proceedings of the Institution of Mechanical Engineers, 1963, 177(1): 843-875. |
[39] | BALONI B D, PATHAK Y, CHANNIWALA S A. Centrifugal Blower Volute Optimization Based on Taguchi Method[J]. Computers & Fluids, 2015, 112: 72-78. |
[40] | NILUGAL M L, KARANTH K V, MADHWESH N. Numerical Investigations on the Effect of Volute Casing Treatment for Performance Augmentation in a Centrifugal Fan[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236(6): 2791-2802. |
[41] | SHEN Zhengjing, CHU Wuli, YAN Song, et al. Study of the Performance and Internal Flow in Centrifugal Pump with Grooved Volute Casing[J]. Modern Physics Letters B, 2020, 34(25): 2050268. |
[42] | ASOMANI S N, YUAN Jianping, WANG Longyan, et al. Geometrical Effects on Performance and Inner Flow Characteristics of a Pump-as-turbine: a Review[J]. Advances in Mechanical Engineering, 2020, 12(4): 168781402091214. |
[43] | HARIHARAN C, GOVARDHAN M. Improving Performance of an Industrial Centrifugal Blower with Parallel Wall Volutes[J]. Applied Thermal Engineering, 2016, 109: 53-64. |
[44] | RUTSCHI K. The Effect of the Guide Apparatus on the Output and Efficiency of Centrifugal Pumps[J]. Schwiez Bauz,1961, 79:233–240. |
[45] | AUNGIER R H. Centrifugal Compressors: a Strategy for Aerodynamic Design and Analysis[M].New York:ASME Press, 2000. |
[46] | CHURCH A N. Centrifugal Pumps and Blowers[M]. Hemisphere Publishing Corporation, 1989:58-94. |
[47] | ECK B. Fans:Design and Operation of Centrifugal, Axial-flow and Cross-flow Fans[M]. Oxford: Pergamon Press, 1973. |
[48] | SHEPHERD D G. Principle of Turbomachinery[M]. New York: Macmillan Publishing Co., Inc., 1956. |
[49] | STEPANOFF A J. Centrifugal & Axial Flow Pumps: Theory, Design and Application[M]. New York: Wiley, 1948. |
[50] | STEPANOFF A J. Turbo Blowers: Theory, Design and Application of Centrifugal and Axial Flow Compressors and Fans[M]. New York: John Wiley & Sons, Inc., 1955. |
[51] | TURTON R K. Principles of Turbomachinery[M]. New York, London: E. & F. N. Spon Ltd., 1984. |
[52] | YAHYA S M. Turbine Compressors and Fans[M]. New Delhi: Tata Mcgraw Hill Publishing Company Limited, 2002. |
[53] | AYDIN A, YIGIT C, ENGIN T, et al. Optimisation of a Mixed Flow Fan with NACA Profiled Blades Using Computational Fluid Dynamics[J]. Progress in Computational Fluid Dynamics, an International Journal, 2020, 20(5): 263. |
[54] | LEE K J, PARK I W, BANG K S, et al. Optimal Design of a Plenum Fan with Three-dimensional Blades[J]. Applied Sciences, 2020, 10(10): 3460. |
[55] | SAFARI M R, ANBARSOOZ M, NIAZMAND H. The Effects of the Return Channel Geometry on the Aerodynamic Performance of a Centrifugal Compressor: a Numerical Study[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2023, 237(5): 892-915. |
[56] | ZHOU Shuiqing, ZHOU Huaxin, YANG Ke, et al. Research on Blade Design Method of Multi-blade Centrifugal Fan for Building Efficient Ventilation Based on Hicks-Henne Function[J]. Sustainable Energy Technologies and Assessments, 2021, 43: 100971. |
[57] | LEE Y T, LIM H C. Performance Assessment of Various Fan Ribs Inside a Centrifugal Blower[J]. Energy, 2016, 94: 609-622. |
[58] | LIU Shulian, GUO Yizhe, ZHANG Yuchi, et al. Effects of Tip Clearance and Impeller Eccentricity on the Aerodynamic Performance of Mixed Flow Fan[J]. Symmetry, 2023, 15(1): 201. |
[59] | ZHANG Yifan, DOU Huashu. Effect of Blade Profile on the Performance of a Centrifugal Fan with Different Velocity Distribution Functions[J]. International Journal of Fluid Machinery and Systems, 2020, 13(3): 623-634. |
[60] | 刘阳, 许子倩, 张义云, 等. S型仿生叶片对可逆多翼离心风机气动性能的影响[J]. 工程热物理学报, 2021, 42(11): 2841-2848. |
LIU Yang, XU Ziqian, ZHANG Yiyun, et al. Effects of S-type Bionic Blade on Aerodynamic Performance of Reversible Multi-blade Centrifugal Fan[J]. Journal of Engineering Thermophysics, 2021, 42(11): 2841-2848. | |
[61] | 王加浩, 龚东巧, 刘小民, 等. 采用仿鲤科鱼C型启动构型叶片的多翼离心风机气动性能研究[J]. 西安交通大学学报, 2022, 56(9): 57-68. |
WANG Jiahao, GONG Dongqiao, LIU Xiaomin, et al. Aerodynamic Performance of Multi-blade Centrifugal Fan with Bionic Blades Inspired by C-type Start of Cyprinidae[J]. Journal of Xi’an Jiaotong University, 2022, 56(9): 57-68. | |
[62] | 孟永哲, 许子倩, 刘小民. 多翼离心风机模化设计中叶轮-蜗壳的匹配性研究[J]. 风机技术, 2022, 64(3): 10-16. |
MENG Yongzhe, XU Ziqian, LIU Xiaomin. Study on the Matching of Impeller and Volute in the Modeling Design of Multi-blade Centrifugal Fan[J]. Chinese Journal of Turbomachinery, 2022, 64(3): 10-16. | |
[63] | 刘阳, 刘小民, 陈宗华, 等. 多翼离心风机分组优化设计对风机盘管整机气动性能的响应度研究[J]. 西安交通大学学报, 2022, 56(7): 156-167. |
LIU Yang, LIU Xiaomin, CHEN Zonghua, et al. Responsiveness of Grouping Optimization Design of Multi-blade Centrifugal Fan to Aerodynamic Performance of Fan Coil Unit[J]. Journal of Xi’an Jiaotong University, 2022, 56(7): 156-167. | |
[64] | MICHALSON A, AMENDE K L, JOHNSON E. Studying the Effects of Suction Chamber Intrusions and Housing Proximity on Backward Centrifugal Fan Performance Utilizing Computational Fluid Dynamics[J]. ASHRAE Transactions, 2022, 128: 236-243. |
[65] | LIU Xue, LIU Jian, WANG Dong, et al. Experimental and Numerical Simulation Investigations of an Axial Flow Fan Performance in High-altitude Environments[J]. Energy, 2021, 234: 121281. |
[66] | QIU Xiaozhang, YU Jianghong, YAO Qishui, et al. Reliability-based Analysis Method of Fluid Dynamics for Turbomachinery with Interval Distribution Parameters[J]. Engineering Optimization, 2021, 53(6): 919-940. |
[67] | 蒋博彦, 肖千豪, 杨筱沛, 等. 多翼离心风机蜗壳小型化设计数值研究[J]. 机械工程学报, 2021, 57(9): 175-182. |
JIANG Boyan, XIAO Qianhao, YANG Xiaopei, et al. Numerical Study on Downsizing Design of Multi-blade Centrifugal Fan Volute[J]. Journal of Mechanical Engineering, 2021, 57(9): 175-182. | |
[68] | SONG Zhiliang, XIE Dacheng, LING yu, et al. Finite Element Analysis for Petiole’s Fracture of Mine-used Explosion-proof Axial Fan[J]. Applied Mechanics and Materials, 2014, 680: 228-232. |
[69] | 曹海兰, 李阳, 乔世强. 离心通风机叶轮应力与振动分析[J]. 内燃机与配件, 2020(11): 76-78. |
CAO Hailan, LI Yang, QIAO Shiqiang. Stress and Vibration Analysis of Centrifugal Fan Impeller[J]. Internal Combustion Engine & Parts, 2020(11): 76-78. | |
[70] | SUN Yu, WANG Xiaoyu, DU Lin, et al. Effect of Acoustic Treatment on Fan Flutter Stability[J]. Journal of Fluids and Structures, 2020, 93: 102877. |
[71] | FAN Chengwei, AMANKWA ADJEI R, WU Yadong, et al. Parametric Study on the Aerodynamic Performance of a Ducted-fan Rotor Using Free-form Method[J]. Aerospace Science and Technology, 2020, 101: 105842. |
[72] | MOHAIDEEN M M. Optimization of Backward Curved Aerofoil Radial Fan Impeller Using Finite Element Modelling[J]. Procedia Engineering, 2012, 38: 1592-1598. |
[73] | YE Xuemin, LI Pengmin, LI Chunxi, et al. Numerical Investigation of Blade Tip Grooving Effect on Performance and Dynamics of an Axial Flow Fan[J]. Energy, 2015, 82: 556-569. |
[74] | LIU Rui, SUN Yu, NI Jun. Geometric Deformation Prediction of a Centrifugal Impeller Considering Welding Distortion and Fluid-structure Interaction[J]. Journal of Manufacturing Processes, 2023, 96: 80-98. |
[75] | ZHANG Jiankun, LIU Haihu. Effect of Blade Tip Pattern on Blade Load and Vibration Characteristics of a Twin-stage Axial Flow Fan[J]. Journal of Mechanical Science and Technology, 2022, 36(7): 3487-3500. |
[76] | ZHANG Lei, HE Ruiyang, WANG Xin, et al. Study on Static and Dynamic Characteristics of an Axial Fan with Abnormal Blade under Rotating Stall Conditions[J]. Energy, 2019, 170: 305-325. |
[77] | ZHAO Ying, FENG Jianmei, ZHOU Qiang, et al. Blade Fracture Analysis of a Motor Cooling Fan in a High-speed Reciprocating Compressor Package[J]. Engineering Failure Analysis, 2018, 89: 88-99. |
[78] | NAKANISHI Y, HONDA T, NAKASHIMA Y, et al. Shaft Seal for Separation of Water and Air with Low Frictional Torque[J]. Tribology International, 2016, 94: 437-445. |
[79] | HU Songtao, HUANG Weifeng, SHI Xi, et al. Evolution of Bi-Gaussian Surface Parameters and Sealing Performance for a Gas Face Seal under a Low-speed Condition[J]. Tribology International, 2018, 120: 317-329. |
[80] | XU Jing, PENG Xudong, BAI Shaoxian, et al. Experiment on Wear Behavior of High Pressure Gas Seal Faces[J]. Chinese Journal of Mechanical Engineering, 2014, 27(6): 1287-1293. |
[81] | DINGUI K, BRUNETIÈRE N, BOUYER J, et al. Surface Texturing to Reduce Temperature in Mechanical Seals[J]. Tribology Online, 2020, 15(4): 222-229. |
[82] | CHÁVEZ A, de SANTIAGO O. Experimental Measurements of the Thermo Elastic Behavior of a Dry Gas Seal Operating with Logarithmic Spiral Grooves of 11° and 15°[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235(9): 1807-1819. |
[83] | VARNEY P, GREEN I. Impact Phenomena in a Noncontacting Mechanical Face Seal[J]. Journal of Tribology, 2017, 139(2): 022201. |
[84] | LUO Yin, FAN Yakun, HAN Yuejiang, et al. Research on the Dynamic Characteristics of Mechanical Seal under Different Extrusion Fault Degrees[J]. Processes, 2020, 8(9): 1057. |
[85] | HU Songtao, HUANG Weifeng, LIU Xiangfeng, et al. Influence Analysis of Secondary O-ring Seals in Dynamic Behavior of Spiral Groove Gas Face Seals[J]. Chinese Journal of Mechanical Engineering, 2016, 29(3): 507-514. |
[86] | XUAN Haijun, ZHANG Na, LU Bin, et al. Investigation of High-speed Abrasion Behavior of an Abradable Seal Rubber in Aero-engine Fan Application[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1615-1623. |
[87] | LI Xinrui, FAN Xiaoqiang, LI Zhenggui, et al. Failure Mechanism of Magnetic Fluid Seal for Sealing Liquids[J]. Tribology International, 2023, 187: 108700. |
[88] | HUANG T C, LIN C Y, LIAO K C. Sealing Performance Assessments of PTFE Rotary Lip Seals Based on the Elasto-hydrodynamic Analysis with the Modified Archard Wear Model[J]. Tribology International, 2022, 176: 107917. |
[89] | SHIMADA K, KIMURA K, WATANABE H. A Study of Radiator Cooling Fan with Labyrinth Seal[J]. JSAE Review, 2003, 24(4): 431-439. |
[90] | LI Guoqing, ZHANG Shen, KANG Zhong, et al. Leakage and Wear Characteristics of Carbon Seals for Aero-engines[J]. Chinese Journal of Aeronautics, 2022, 35(11): 389-400. |
[91] | OUTIRBA B, HENDRICK P. Operating Life Assessment of a Carbon Fibre Brush Seal through Endurance Testing[J]. Tribology International, 2023, 179: 108076. |
[92] | TENG Liming, JIANG Jinbo, PENG Xudong, et al. Influence of Surface Grooving Methods on Steady and Dynamic Performance of Spiral Groove Gas Face Seals[J]. Alexandria Engineering Journal, 2023, 64: 55-80. |
[93] | PARMAR S, RAMANI V, UPADHYAY R V, et al. Two Stage Magnetic Fluid Vacuum Seal for Variable Radial Clearance[J]. Vacuum, 2020, 172: 109087. |
[94] | HU Fengming, HE Qiang, HUANG Weifeng, et al. Face Grooves for State Monitoring in Dry Gas Seals[J]. Tribology International, 2023, 189: 108950. |
[95] | 孙少辰. 波纹管道阻火器系统的阻爆特性研究[D]. 大连: 大连理工大学, 2018. |
SUN Shaochen. Research of Explosion Resistant Characteristic in In-line Crimped-ribbon Flame Arrester[D]. Dalian: Dalian University of Technology, 2018. | |
[96] | 黄名宗. 防爆柴油机排气阻火器流场分析及结构改进[D]. 太原: 中北大学, 2015. |
HUANG Mingzong. Flow Field Analysis and Structure Improvement of flameproof Diesel Engine Flame Barrier[D]. Taiyuan: North University of China, 2015. | |
[97] | 贺滕, 王维斌, 赵弘, 等. 基于FLUENT管内封堵器周围流场的数值模拟[J]. 油气储运, 2013, 32(6): 615-619. |
HE Teng, WANG Weibin, ZHAO Hong, et al. Fluent-based Numerical Simulation of the Flow Field around the Plugging Tools[J]. Oil & Gas Storage and Transportation, 2013, 32(6): 615-619. | |
[98] | SUN Shaochen, LIU Gang, LIU Junxuan, et al. Effect of Porosity and Element Thickness on Flame Quenching for In-line Crimped-ribbon Flame Arresters[J]. Journal of Loss Prevention in the Process Industries, 2017, 50: 221-228. |
[99] | BAO Lei, WANG Peng, DANG Wenyi, et al. Experimental Study on Detonation Flame Penetrating through Flame Arrester[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104529. |
[100] | WANG Luqing, MA Honghao, SHEN Zhaowu. The Quenching of Propane Deflagrations by Crimped Ribbon Flame Arrestors[J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 567-574. |
[101] | HAMZAH N F, KASMANI R M, CHANDREN S, et al. Effect of Metal Coating on Physicochemical Properties of Ceramic Foam for Flame Suppression Application[J]. Ceramics International, 2023, 49(22): 36646-36658. |
[102] | CHEN Jiayan, JIN Kaiqiang, DUAN Qiangling, et al. Experimental Study on the Competing Effect of Ceramic Pellets on Premixed Methane-air Flame Propagation in a Duct[J]. Journal of Loss Prevention in the Process Industries, 2021, 72: 104530. |
[103] | YUAN Bihe, HE Yunlong, CHEN Xianfeng, et al. Flame and Shock Wave Evolution Characteristics of Methane Explosion in a Closed Horizontal Pipeline Filled with a Three-dimensional Mesh Porous Material[J]. Energy, 2022, 260: 125137. |
[1] | 孙冬野, 胡丰宾, 秦大同, 刘振军. 湿式多片制动器热应力分布规律试验分析 [J]. J4, 201016, 21(16): 2006-2010. |
[2] | 牛延昭1, 刘宏伟1, 宋亚丽2, 朱祥龙1, 黄佳美2, 康仁科1. 基于有限元模拟的螺栓退刀槽滚压轮优化及试验研究[J]. 中国机械工程, 2025, 36(06): 1214-1221. |
[3] | 关焦月1, 高源1, 艾延廷1, 田晶1, 姚玉东2. 螺栓预紧状态下螺纹扩展应力分析[J]. 中国机械工程, 2025, 36(05): 923-932. |
[4] | 杜冰1, 2, 李扬1, 2, 刘凤华1, 2, 董明鑫1, 2, 万宇凡1, 2, 钟庆帅1, 2. 考虑厚向应力的板材临界起皱判据建立及影响[J]. 中国机械工程, 2025, 36(05): 1074-1082. |
[5] | 郭飞燕1, 张永亮2, 刘嘉良1, 张辉2. 强迫定位装夹对航空复合材料构件几何物理装配性能的影响与协同保障[J]. 中国机械工程, 2025, 36(04): 655-670. |
[6] | 周金华1, 2, 齐琪1, 2, 任军学1, 2, 詹梅1, 2. 锥度球头刀四轴铣削TC4残余应力梯度分布反解[J]. 中国机械工程, 2025, 36(04): 770-779. |
[7] | 刘阳1, 温泽峰1, 吴兴文2, 周亚波1, 陶功权1, 张振先3, 侯建文3, 易志4. 基于虚拟激励法的地铁车辆排障器疲劳失效研究及拓扑优化[J]. 中国机械工程, 2025, 36(04): 840-849. |
[8] | 徐平, 罗晶, 于英华, 沈佳兴, 黎文利. 织构化盘式摩擦副性能及优化设计研究[J]. 中国机械工程, 2024, 35(10): 1774-1782. |
[9] | 田涛1, 3, 李文辉2, 3, 4, 温学杰1, 3, 李秀红1, 3, 杨胜强1, 3. 水平振动式滚磨光整加工残余应力离散元-有限元耦合仿真与实验研究[J]. 中国机械工程, 2024, 35(09): 1667-1676. |
[10] | 董志波1, 李承昆1, 王程程1, 韩放1, 张植航1, 滕俊飞2, 吕彦龙2. 残余应力对GH3230层板焊缝热疲劳寿命影响规律研究[J]. 中国机械工程, 2024, 35(06): 1097-1102. |
[11] | 曾维和, 苟黎刚, 王明庆, 王磊, 俞荣贵. 基于等效结构应力法的铝合金无钉压铆接头疲劳分析与试验研究[J]. 中国机械工程, 2024, 35(06): 1129-1139. |
[12] | 张金阳, 许伟春, 王笑含, 江小辉, 高山. 铣削工艺优化对镍基高温合金加工残余应力分布影响研究[J]. 中国机械工程, 2024, 35(04): 624-635. |
[13] | 李燕乐, 潘忠涛, 戚小霞, 崔维强, 陈健, 李方义. 热处理工艺对激光熔覆316L温度场与应力场的影响规律[J]. 中国机械工程, 2024, 35(04): 666-677. |
[14] | 黄薇, 池骋. 带后掠桨尖旋翼/螺旋桨的悬停气弹特性分析[J]. 中国机械工程, 2024, 35(02): 191-200. |
[15] | 吴若, 魏沛堂, 谢怀杰, 边疆, 卢泽华, 刘怀举. 喷油润滑聚醚醚酮的接触疲劳性能[J]. 中国机械工程, 2024, 35(02): 221-228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||