中国机械工程 ›› 2025, Vol. 36 ›› Issue (04): 655-670.DOI: 10.3969/j.issn.1004-132X.2025.04.002
郭飞燕1;张永亮2;刘嘉良1*;张辉2
出版日期:
2025-04-25
发布日期:
2025-05-20
作者简介:
郭飞燕,男,1986年生,博士、副教授。研究方向为航空航天先进装配与连接技术等。E-mail:2009200890@mail.nwpu.edu.cn。
基金资助:
GUO Feiyan1;ZHANG Yongliang2;LIU Jialiang1*;ZHANG Hui2
Online:
2025-04-25
Published:
2025-05-20
摘要: 航空用复合材料大尺寸薄壁构件自身成形精度较低、面内翘曲变形大,装配误差累积易在配合连接部位出现不期望的几何间隙与外形超差,在工程中通常采取施加局部装夹力的强迫方式予以被动消减,但此种方法会引发不均衡的装配内应力分布甚至内部损伤等质量问题,直接影响装配结构的飞行服役性能。首先阐述强迫定位装夹原理,解析强迫定位装夹对复合材料弱刚性薄壁件装配几何精度与内应力/损伤等物理性能的影响规律;然后,从分析装配前的强迫装夹工艺参数优化、装配中的工装柔性定位力位调整两方面出发,解析强迫装配力限值设定、几何间隙消减、应力/损伤演化预测、装夹工艺参数优化反求、应力/损伤精准测量等关键技术及其具体实现步骤方法,以实现强迫定位装夹过程中装配变形、内应力和损伤状态等形性指标的耦合分析、主动控制与协同保障;最后,从实际工程应用的角度出发,提出面向复合材料构件高质高效与低成本装配目标的下一步工作重点。
中图分类号:
郭飞燕1, 张永亮2, 刘嘉良1, 张辉2. 强迫定位装夹对航空复合材料构件几何物理装配性能的影响与协同保障[J]. 中国机械工程, 2025, 36(04): 655-670.
GUO Feiyan1, ZHANG Yongliang2, LIU Jialiang1, ZHANG Hui2. Effects of Forced Positioning&Clamping on Geometric and Physical Assembly Performances for Composite Structures and Collaborative Guarantee Strategies[J]. China Mechanical Engineering, 2025, 36(04): 655-670.
[1]郭飞燕, 肖世宏, 肖庆东, 等. 面向性能保障的新一代飞机结构装配质量控制技术[J]. 机械工程学报, 2024, 60(16):412-428. GUO Feiyan, XIAO Shihong, XIAO Qingdong, et al. Structure Assembly Quality Controlling Technology Oriented to Performance Assurance for New-generation Aircraft[J]. Journal of Mechanical Engineering, 2024, 60(16):412-428. [2]李真, 王俊, 邓凡臣, 等. 复合材料机身壁板的强度分析与试验验证[J]. 航空学报, 2020, 41(9):123-135. LI Zhen, WANG Jun, DANG Fancheng, et al. Strength Analysis and Test Verification of Composite Fuselage Panels[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9):123-135. [3]刘镇阳, 翟雨农, 李东升, 等. 飞机复合材料壁板装配变形控制技术研究与应用进展[J]. 航空制造技术, 2022, 65(18):46-54. LIU Zhenyang, ZHAI Yunong, LI Dongsheng, et al. Research and Application Progress of Deformation Control Technology for Aircraft Composite Panel Assembly[J]. Aeronautical Manufacturing Technology, 2022, 65(18):46-54. [4]张玮, 王志国, 谭昌柏, 等. 基于夹具主动定位补偿的飞机柔性件装配偏差优化方法[J]. 航空学报, 2017, 38(6):263-271. ZHANG Wei, WANG Zhiguo, TAN Changbai, et al. Assembly Variation Optimization Method of Aircraft Compliant Parts Based on Active Locating Compensation of Fixture[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):263-271. [5]LIU C, CHENG H, ZHANG K, et al. An Efficient Trans-scale and Multi-stage Approach for the Deformation Analysis of Large-sized Thin-walled Composite Structure in Aircraft Assembly[J]. International Journal of Advanced Manufacturing Technology, 2022, 120(9/10):5697-5713. [6]叶鑫, 安鲁陵, 岳烜德, 等. 填隙补偿对碳纤维/环氧树脂复合材料-铝合金装配结构力学性能的影响[J]. 复合材料学报, 2020, 37(9):2183-2199. YE Xin, AN Luling, YUE Xuande, et al. Effect of Gap-filling Compensation on Mechanical Properties of Carbon Fiber/Epoxy composite-aluminum Assembly Structure[J]. Acta Materiae Compositae Sinica, 2020, 37(9):2183-2199. [7]万玉敏, 张发, 刘长喜, 等. 飞机典型薄壁复合材料夹层结构整体屈曲[J]. 复合材料学报, 2018, 35(8):2235-2245. WAN Yumin, ZHANG Fa, LIU Changxi, et al. Overall Buckling of Typical Thin-wall Sandwich Composites Applied on the Aircraft[J]. Acta Materiae Compositae Sinica, 2018, 35(8):2235-2245. [8]郭瑜超, 王立凯, 孙喜桂, 等. 民用飞机机身壁板复杂试验载荷优化技术[J]. 航空学报, 2023, 44(17):164-175. GUO Yuchao, WANG Likai, SUN Xigui, et al. Optimization Technology for Complex Test Load of Civil Fuselage Panel[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17):164-175. [9]张桂书. 飞机复合材料构件装配间隙补偿研究[D]. 南京:南京航空航天大学, 2015. ZHANG Guishu. Research on Assembly Gap Compensation for Aircraft Composite Components[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015. [10]张秋月. 飞机复合材料结构装配压紧力大小与布局的优化[D]. 南京:南京航空航天大学, 2019. ZHANG Qiuyue.Optimization of Magnitude and Layout of Pressing Force for Composite Aerostructure Assembly[D]. Nanjing :Nanjing University of Aeronautics and Astronautics, 2019. [11]MEON M, HUSAIN H, SAEDON J, et al. Capability Analysis of Puck Damage Model in Predicting the Damage Behavior of Unidirectional Composite Laminates under Different Scenarios[J]. IOP Conference Series Materials Science and Engineering, 2020, 834(1):012028. [12]GOERING J, BOHLMANN R, WANTHAL S, et al. Assembly Induced Delaminations in Composite Structures[J]. Engineering, Materials Science, 1992,3:1352-1378. [13]ZHAO L, WANG K, DING F, et al. A Post-buckling Compressive Failure Analysis Framework for Composite Stiffened Panels Considering Intra-, Inter-laminar Damage and Stiffener Debonding[J]. Results in Physics, 2019, 13:102205. [14]WEN Y, YUE X, HUNT J, et al. Feasibility Analysis of Composite Fuselage Shape Control via Finite Element Analysis[J]. Journal of Manufacturing Systems, 2018, 46(1):272-281. [15]蔡跃波. 飞机复合材料结构螺栓连接拧紧过程中的夹紧力研究[D]. 南京:南京航空航天大学, 2022. CAI Yuebo. Study of the Clamping Force during Bolt Tightening Process of Aircraft Composite Material Structure[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2022. [16]RICCIO A, RAIMONDO A, BORRELLI R, et al. Numerical Simulations of Inter-laminar Damage Evolution in a Composite Wing Box[J]. Applied Composite Materials, 2014, 21(3):467-481. [17]周梦倩, 王华. 变厚度复合材料C梁数值模拟与实验[J]. 机械设计与研究, 2019, 35(3):80-82. ZHOU Mengqian, WANG Hua. Numerical Simulation and Experimental Study of Variable Thickness Composite C Beam[J]. Machine Design and Research, 2019, 35(3):80-82. [18]许良, 边钰博, 宋万万, 等. 轴压载荷下蒙皮参数对复合材料加筋壁板屈曲及后屈曲行为的影响[J]. 复合材料科学与工程, 2023(4):100-106. XU Liang, BIAN Yubo, SONG Wanwan, et al.Effect of Skin Parameters on the Buckling and Post-buckling Behavior of Composite Stiffened Panels under Axial Load[J]. Composites Science and Engineering, 2023(4):100-106. [19]KELLY G, HALLSTRM S. Strength and Failure Mechanisms of Composite Laminates Subject to Localised Transverse Loading[J]. Composite structures, 2005, 69(3):301-314. [20]ZHAI Y, QU H, LI R, et al. Effect of Forced Assembly on Bearing Performance of Single-lap, Countersunk Composite Bolted Joints—Part Ⅰ:Experimental Investigation[J]. Composite Structures, 2023, 319(9):117201. [21]QU H, LI D, ZHAI Y, et al. Effect of Forced Assembly on Bearing Performance of Single-lap, Countersunk Composite Bolted Joints—Part Ⅱ:Numerical Investigation[J]. Composite Structures, 2023, 319(9):117169. [22]QU H, LI D, ZHAI Y, et al. Experimental Investigation on the Effect of Forced Assembly on Fatigue Behavior of Single-lap, Countersunk Composite Bolted Joints[J]. International Journal of Fatigue, 2024, 189:108542. [23]SODERBERG R, WARMEFJORD K, LINDKVIST L. Variation Simulation of Stress during Assembly of Composite Parts[J]. CIRP Annals—Manufacturing Technology, 2015, 64(1):17-20. [24]LUPULEAC S, ZAITSEVA N, PETUKHOVA M, et al. Combination of Experimental and Computational Approaches to A320 Wing Assembly[J]. SAE Technical Paper, 2017: 2017-01-2085. [25]刘怡冰. 复合材料翼盒制造工艺研究与实现[D]. 南京:南京航空航天大学, 2015. LIU Yibing.Research and Implement of the Composite Wingbox Manufacturing Process[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. [26]WU Fengfeng, DU Baorui, LI Dongsheng. Optimal Assembly of a Skin Panel onto the Fuselage Framework Based on Force Control Technology[J].Proceedings of the Institution of Mechanical Engineers, Part E:Journal of Process Mechanical Engineering, 2016, 230(6):447-451. [27]刘春青, 洪军, 冯, 等.飞机薄壁件多点柔性定位变形控制寻优算法[J]. 上海交通大学学报, 2013, 47(8):1191-1197. LIU Chunqing, HONG Jun, FENG Yan, et al.Searching Optimization Algorithm for Deformation Control of Aircraft Thin Walled Parts in Multi-point Flexible Tooling System[J]. Journal of Shanghai Jiao Tong University, 2013, 47(8):1191-1197. [28]JONSSON M, MURRAY T, ROBERTSSON A, et al. Force Feedback for Assembly of Aircraft Structures[J]. SAE Paper, 2010: 2010-01-1872. [29]姜策. 基于柔性工装的飞机复合材料壁板外形调控技术研究[D]. 南京:南京航空航天大学, 2022. JIANG Ce.A Shape Control Technology of Aircraft CFRP Panel Based on Flexible Assembly Tooling[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022. [30]LIU X, AN L, WANG Z, et al. Assembly Variation Analysis of Aircraft Panels under Part-to-part Locating Scheme[J]. International Journal of Aerospace Engineering, 2019, 2019:9563596. [31]ZHANG W, AN L, CHEN Y, et al. Optimisation for Clamping Force of Aircraft Composite Structure Assembly Considering Form Defects and Part Deformations[J]. Advances in Mechanical Engineering, 2021, 13(4):155-164. [32]QU W, TANG W, KE Y. Pre-joining Processes Optimization Method for Panel Orienting to the Clearances Suppression of Units and the Clearances Flow among Units[J]. International Journal Advanced Manufacturing Technology, 2018, 94(4):1357-1371. [33]盖宇春, 朱伟东, 柯映林. 大型飞机总装配中支撑点设计分析技术[J]. 浙江大学学报(工学版), 2013, 47(12):2176-2183. GAI Yuchun, ZHU Weidong, KE Yinglin. Design and Analysis of Fuselage Supporting Position for Aircraft Final Assembly[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(12):2176-2183. [34]王张浩, 李东升, 翟雨农. 弱刚性薄壁件夹具布局优化方法研究概述[J]. 航空制造技术, 2023, 66(14):118-135. WANG Zhanghao, LI Dongsheng, ZHAI Yunong.A Review of Fixture Layout Optimization Method for Weakly-rigid Thin-walled Workpieces[J]. Aeronautical Manufacturing Technology, 2023, 66(14):118-135. [35]周梦倩. 面向回弹偏差的复合材料升降舵装配公差分析方法研究[D]. 上海:上海交通大学, 2019. ZHOU Mengqian.A Research on Assembly Tolerance Analysis Method of Composite Elevator for Spring-in Deviation[J]. Shanghai:Shanghai Jiao Tong University, 2019. [36]张秋月, 安鲁陵, 岳烜德, 等. 基于遗传算法的飞机复合材料结构装配压紧力大小与布局的优化[J]. 复合材料学报, 2019, 36(6):1546-1557. ZHANG Qiuyue, AN Luling, YUE Xuande, et al.Optimization of Size and Layout of Pressing Force for Composite Airframe Structure Assembly Based on Genetic Algorithm[J]. Acta Materiae Compositae Sinica, 2019, 36(6):1546-1557. [37]MENASSA R, DEVRIES W. Optimization Methods Applied to Selecting Support Positions in Fixture Design[J]. Journal of Engineering for Industry, 1991, 113(4):412-418. [38]YANG D, QU W, KE Y. Evaluation of Residual Clearance after Pre-joining and Pre-joining Scheme Optimization in Aircraft Panel Assembly[J]. Assembly Automation, 2016, 36(4):376-387. [39]米娇鹏. 面向制造全过程的航空整体加强框孔布局优化研究[D]. 太原:太原理工大学, 2020. MI Jiaopeng.Research on Optimization of Hole Location of Aviation Integral Strengthening Frame for the Whole Manufacturing Process[D]. Taiyuan:Taiyuan University of Technology, 2020. [40]AJANI I, LU C. Optimal Tolerance Allocation for Non-rigid Assembly Considering the Effect of Deformation on Functional Requirement and Quality Loss Cost[J]. International Journal of Advanced Manufacturing Technology, 2023, 125(1/2):493-512. [41]WANG Z, LI D, SHEN L, et al. Multi-objective Optimisation of Assembly Fixturing Layout for Large Composite Fuselage Panel Reinforced by Frames and Stringers[J]. International Journal of Advanced Manufacturing Technology, 2023, 125(3/4):1403-1418. [42]DU J, YUE X, HUNT J H, et al. Optimal Placement of Actuators via Sparse Learning for Composite Fuselage Shape Control[J]. Journal of Manufacturing Science and Engineering:Transactions of the ASME, 2019. DOI:10.1115/1.4044249. [43]ALBAHAR A, KIM I, LUTZ T, et al. Stress-aware Optimal Placement of Actuators for Ultra-high Precision Quality Control of Composite Structures Assembly[C]∥2022 IEEE 18th International Conference on Automation Science and Engineering(CASE). Mexico City:IEEE, 2022:2178-2183. [44]ZHONG Z, MOU S, HUNT J, et al. Convex Relaxation for Optimal Fixture Layout Design[J]. IISE Transactions, 2023, 55(7):746-754. [45]MOU S, BIEHLER M, YUE X, et al. SPAC:Sparse Sensor Placement-based Adaptive Control for High Precision Fuselage Assembly[J]. IISE Transactions, 2023, 55(11):1133-1143. [46]BI Y, YAN W, KE Y. Numerical Study on Predicting and Correcting Assembly Deformation of a Large Fuselage Panel during Digital Assembly[J]. Assembly Automation, 2014, 34(2):204-216. [47]SUN Z, PAN Z, SHANGGUAN J, et al. A Posture Alignment-based Methodology for Gap Optimization of Aircraft Composite Panel Assembly[J]. Aerospace Science and Technology, 2023, 140:108442. [48]于鑫. 航空整体加强框自适应定位方法研究[D]. 太原:太原理工大学, 2021. YU Xin. Assembly-oriented Optimization Design of Positioning Quality for Aircraft Integral Strengthening Frame[D]. Taiyuan:Taiyuan University of Technology, 2021. [49]郭飞燕, 刘检华, 肖庆东, 等. 数字化装配工装工作状态监测评估及适应性控制技术[J]. 航空学报, 2023, 44(16):274-293. GUO Feiyan, LIU Jianhua, XIAO Qingdong, et al.Monitoring and Evaluation of Working Condition and Adaptive Control Technology for Digital Assembly Tooling[J]. Acta Aeronautica et Astronautica Sinica2023, 44(16):274-293. [50]郭志敏, 蒋君侠, 柯映林. 基于三坐标定位器支撑的飞机大部件调姿内力[J]. 浙江大学学报(工学版), 2010, 44(8):1508-1513. GUO Zhimin, JIANG Junxia, KE Yinglin. Posture Alignment Internal Force in Three Axis Actuators Based Assembly System for Large Aircraft Parts[J]. Journal of Zhejiang University(Engineering Science), 2010, 44(8):1508-1513. [51]马文睿. 基于可调定位器的飞机壁板装配偏差补偿技术[D]. 南京:南京航空航天大学, 2021. MA Wenrui.Compensation Technology of Aircraft Wall Panel Assembly Deviation Based on Adjustable Positioner[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2021. [52]杨应科, 李东升, 沈立恒, 等. 大型复合材料机身壁板多机器人协同装配调姿控形方法[J]. 航空学报, 2023, 44(14):295-306. YANG Yingke, LI Dongsheng, SHEN Liheng, et al.Pose and Shape Adjustment Method for CFRP Fuselage Panel Based on Multi-robot Collaboration[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(14):295-306. [53]WANG Z, LI D, SHEN L, et al. Collaborative Force and Shape Control for Large Composite Fuselage Panels Assembly[J]. Chinese Journal of Aeronautics, 2023, 36(7):213-225. [54]WEN Y, YUE X, HUNT J, et al. Virtual Assembly and Residual Stress Analysis for the Composite Fuselage Assembly Process[J]. Journal of Manufacturing Systems, 2019, 52(7):55-62. [55]唐文献. 基于Unity的航空整体加强框装配定位系统研究[D]. 太原:太原理工大学, 2022. TANG Wenxian.Unity-based Study on the Positioning System for Aerospace Integral Reinforcement Frame Assembly[D]. Taiyuan:Taiyuan University of Technology, 2022. [56]REZAEI A, WRMEFJORD K, SDERBERG R, et al. Individualizing Locator Adjustments of Assembly Fixtures Using a Digital Twin[J]. Journal of Computing and Information Science in Engineering, 2019. DOI:10.1115/1.4043529. [57]MELLO J, TRABASSO L, SILVA A, et al. Clamping Force Model Application on the Aircraft Structural Assembly[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124:1951-1969. [58]TAN Changbai,ZHANG Wei,WANG Zhiguo. Dimensional Variation Modeling of Aircraft Compliant Part Assembly Considering Clamping Force Change[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2019, 36(2):298305. [59]YANG Y, LI D, ZHAI Y. Robotic Compliant Assembly for Complex-shaped Composite Aircraft Frame Based on Gaussian Process Considering Uncertainties[J]. Chinese Journal of Aeronautics, 2024, 37(10):471-482. [60]LI Chengyu, HU Junshan, KANG Ruihao. Structural Deformation and Clamping Force Monitoring of Reconfigurable Tooling Motivated by Strain Data in Aircraft Assembly[J]. Smart Materials and Structures, 2024, 33:055046. [61]ARISTA R, FALGARONE H. Flexible Best Fit Assembly of Large Aircraft Components. Airbus A350 XWB Case Study[C]∥IFIP International Conference on Product Lifecycle Management. Berlin:Springer, 2017, 517: 152-161. [62]BERTELSMEIER F, DETERT T, UBELHOR T, et al. Cooperating Robot Force Control for Positioning and Untwisting of Thin Walled Components[J]. Advances in Robotics & Automation, 2017, 6(3):1000179. [63]SCHMITT R, WITTE A, JANSSEN M, et al. Metrology Assisted Assembly of Airplane Structure Elements[J]. Procedia CIRP, 2014, 23:116-121. [64]陈文亮, 潘国威, 王珉. 基于力位协同控制的大飞机机身壁板装配调姿方法[J]. 航空学报, 2019, 40(2):179-187. CHEN Wenliang, PAN Guowei, WANG Min.High Precision Positioning Method for Aircraft Fuselage Panel Based on Force/Position Control[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(2):179-187. [65]罗中海, 孟祥磊, 巴晓甫, 等. 飞机大部件调姿平台力位混合控制系统设计[J]. 浙江大学学报(工学版), 2015, 49(2):265-274. LUO Zhonghai, MENG Xianglei, BA Xxiaofu, et al.Design on Hybrid Force Position Control of Large Aircraft Components Posture Alignment Platform[J]. Journal of Zhejiang University(Engineering Science), 2015, 49(2):265-274. [66]HOPPER C, KARAGIAS T, DURACK L, et al. Panel Loaders for A380[J]. SAE Technical Paper Series, 2005:2005-01-3319. [67]RAMIREZ J, WOLLNACK J. Flexible Automated Assembly Systems for Large CFRP-structures[J]. Procedia Technology, 2014,15:447-455. [68]ZHANG H, FENG L, WANG J, et al. Development of Technology Predicting Based on EEMD-GRU:an Empirical Study of Aircraft Assembly Technology[J]. Expert Systems with Applications, 2024, 246:123208. [69]WANG Y, LIU Y, CHEN H, et al. Combined Measurement Based Wing-fuselage Assembly Coordination via Multiconstraint Optimization[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71:7005316. [70]MIAH M, CHAND D, MALHI H. Accuracy Compensation Method with the Combined Dissimilar Measurement Devices for Enhanced Measurement Quality:a Digital Aircraft Assembly Technology[J]. Assembly Automation, 2024, 96(6):780-797. [71]郭东明. 高性能制造[J]. 机械工程学报, 2022, 58(21):225-242. GUO Dongming.High Performance Manufacturing[J]. Journal of Mechanical Engineering, 2022, 58(21):225-242. [72]SHEN W, BAI H, WANG F. Acoustic Emission Characteristics and Damage Evolution of Concrete-encased CFST Columns under Compressive Load[J]. Engineering Fracture Mechanics, 2024, 311:110578. [73]WHITTLE J, DANKS S, SODCZYK I, et al. Using Digital Image Correlation(DIC) to Measure Railway Ballast Movement in Full-scale Laboratory Testing of Sleeper Lateral Resistance[J]. Proceedings of the Institution of Mechanical Engineers, 2024, 238(8):1037-1041. [74]张子傲, 严新锐, 宋晨晨, 等. 超声对直接激光沉积钛基复材中未熔TiC聚集现象的影响[J]. 精密成形工程, 2023, 15(11):21-30. ZHANG Ziao, YAN Xinrui, Song Chenchen, et al.Effect of Ultrasound on Aggregation of Unmelted TiC in Titanium Matrix Composite by Direct Laser Deposition[J]. Journal of Netshape Forming Engineering, 2023, 15(11):21-30. [75]张政, 冷俊男, 许艾明, 等. 一种飞机制造过程中的多源异构大数据的清洗方法及系统:CN202210404338.8[P]. 2022-04-18. ZHANG Zheng, LENG Junnan, XU Aiming, et al. A Cleaning Method and System for Multi-source & Heterogeneous Big Data in Aircraft Manufacturing Process:CN202210404338.8[P]. 2022-04-18. |
[1] | 陶双全, 郝小忠, 杨子剑, 刘舒霆. CF/PEEK复合材料自阻电热原位膜混合加热固化方法[J]. 中国机械工程, 2022, 33(22): 2748-2754. |
[2] | 陈帅, 郭飞燕, 孟月梅, 王明阳, 侯志霞. 融合实测数据的航空结构件修配量迭代寻优及评价方法[J]. 中国机械工程, 2022, 33(17): 2061-2070,2078. |
[3] | 齐振超, 肖叶鑫, 王星星, 陈文亮. Ti45Nb铆钉脉冲电流辅助压铆成形性能分析[J]. 中国机械工程, 2021, 32(23): 2832-2839,2849. |
[4] | 张浩伟, 陈文亮, 王珉, 潘劲伟, 黄稳. 基于冗余基准孔的轻型移动制孔系统定位方法[J]. 中国机械工程, 2021, 32(22): 2697-2704. |
[5] | 张一鸣, 李红卫, 赵安安, 谢乾, 汪俊. 基于多描述子投票的飞机蒙皮局部扫描点云定位[J]. 中国机械工程, 2021, 32(22): 2724-2730,2771. |
[6] | 徐庆贺1;王珉1;陈文亮1;刘登伟2. 面向壁板变形预测的局部位移场分层映射方法[J]. 中国机械工程, 2019, 30(23): 2870-2876,2883. |
[7] | 朱永国1;邓斌1;霍正书1;周结华2. 小样本检测数据驱动的飞机结构件装配关键偏差源诊断[J]. 中国机械工程, 2019, 30(22): 2725-2733. |
[8] | 苏成阳;王志国. 基于网格曲面形状修改的柔性件装配偏差分析[J]. 中国机械工程, 2019, 30(19): 2294-2300. |
[9] | 肖欢1,2;朱永国1;刘春锋3;周结华4. 基于T-Map的飞机部件交点轴线公差转化方法[J]. 中国机械工程, 2019, 30(13): 1558-1567. |
[10] | 刘连圣1;王珉1;孙金萍2;王慧1;丁力平1. 面向自动钻铆离线编程系统的运动仿真技术[J]. 中国机械工程, 2019, 30(04): 461-466. |
[11] | 朱永国1;李俊杰2;刘春锋3;宋利康4. 基于正态模糊时间窗约束的飞机装配物料配送路径规划[J]. 中国机械工程, 2017, 28(21): 2534-2541. |
[12] | 王仲奇;李诚;杨勃;杨元. 基于花授粉算法的曲面薄壁件定位布局优化[J]. 中国机械工程, 2017, 28(18): 2231-2236. |
[13] | 姜丽萍, 陈文亮, 王珉, 刘玉琳, 侯玉昭. 单向压紧制孔工艺的自适应响应面优化方法[J]. 中国机械工程, 2015, 26(23): 3156-3161. |
[14] | 唐君萍, 张丽艳, 刘胜兰, 叶南. 飞机复杂零件上大量小尺寸导孔的快速视觉检测[J]. 中国机械工程, 2015, 26(18): 2456-2465. |
[15] | 郭飞燕, 王仲奇, 康永刚, 李西宁, 张修坤, 曾天. 基于坐标孔的翼肋柔性装配协调方法[J]. 中国机械工程, 2014, 25(24): 3271-3277. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||