中国机械工程 ›› 2025, Vol. 36 ›› Issue (05): 1018-1027,1073.DOI: 10.3969/j.issn.1004-132X.2025.05.013

• 智能制造 • 上一篇    下一篇

基于变分模态滤波和注意力机制的重载机器人铣削系统颤振辨识方法

梁志强1,2;陈司晨1;杜宇超1*;刘宝隆1,2;高子瑞1;乐毅3;肖玉斌4;郑浩然1;仇天阳1;刘志兵1   

  1. 1.北京理工大学机械与车辆学院,北京,100081
    2.北京理工大学(珠海)能源交通学域,珠海,519088
    3.中国空间技术研究院北京卫星制造厂有限公司,北京,100094
    4.江麓机电集团有限公司,湘潭,411100

  • 出版日期:2025-05-25 发布日期:2025-06-25
  • 作者简介:梁志强,男,1984年生,教授、博士研究生导师。研究方向为先进切削磨削抛光技术、机器人加工、微细加工、微细刀具设计与制造、超声加工、特种机床与装备制造技术。E-mail:liangzhiqiang@bit.edu.cn。
  • 基金资助:
    国家自然科学基金(52375400);转化应用项目(2B0188E1,D44F9A65)

Chatter Identification Method for Heavy-duty Robotic Milling Systems Based on Variational Mode Filtering and Attention Mechanism

LIANG Zhiqiang1,2;CHEN Sichen1;DU Yuchao1*;LIU Baolong1,2;GAO Zirui1;YUE Yi3;XIAO Yubin4;ZHENG Haoran1;QIU Tianyang1;LIU Zhibing1   

  1. 1.School of Mechanical Engineering,Beijing Institute of Technology,Beijing,100081
    2.Disciplinary Field of Energy and Transportation,Beijing Institute of Technology(Zhuhai),
    Zhuhai,Guangdong,519088
    3.Beijing Spacecrafts,China Academy of Space Technology,Beijing,100094
    4.Jianglu Machinery & Electronics Group Co.,Ltd.,Xiangtan,Hunan,411100

  • Online:2025-05-25 Published:2025-06-25

摘要: 提出了一种定参变分模态滤波、包络滤波和注意力机制网络辨识相结合的重载机器人铣削系统颤振辨识方法。首先,根据变分模态滤波理论,通过合适地优选二次惩罚项实现对目标高频非颤振信号分量的剔除;然后,为快速辨识当前的加工状态,从信号时域分布出发,结合频域在时域上的映射规律,采用包络滤波方法实现低频主轴转速相关信号分量的剔除;最后,构建基于注意力机制的网络辨识模型,对预处理后的多时序短时信号片段进行分类以实现加工状态辨识,并开展重载机器人铣削系统加工验证实验。实验分析结果表明,通过剔除高频非颤振信号和低频主轴转速相关信号分量,再生颤振辨识准确度得到了进一步提高,辨识准确度可达98.75%。通过与其他辨识方法对比,所提出的重载机器人铣削系统颤振辨识方法可以有效地识别重载机器人铣削系统加工过程中的再生颤振,为后续重载机器人铣削系统颤振在线抑制提供技术支撑。

关键词: 机器人铣削, 颤振辨识, 变分模态滤波, 注意力机制

Abstract: A method was proposed for identifying chatters in heavy-duty robotic milling systems by integrating variational mode filtering with fixed parameters, envelope filtering and an attention mechanism network identification. Initially, variational mode filtering theory was applied to eliminate non-chatter signal components in the high-frequency ranges by optimally selecting a quadratic penalty. Then, to swiftly identify the current machining conditions, the envelope filtering method was employed, leveraging signal time domain distribution and the frequency domain mapping law to remove the spindle speed-related signal components in the low-frequency ranges. Subsequently, a network identification model incorporating an attention mechanism was developed to identify preprocessed multi-temporal short-term signal segments for machining condition identification, followed by verification experiments on heavy-duty robotic milling systems. Experimental analysis results demonstrate that by eliminating non-chatter signals in the high-frequency ranges and spindle speed-related components in the low-frequency ranges, the accuracy of regenerative chatter identification is significantly enhanced, achieving an identification accuracy of 98.75%. Compared with alternative identification methods, the proposed method may effectively identify regenerative chatters during heavy-duty robotic milling processes, thus offering valuable technical support for future online chatter suppression of heavy-duty robotic milling.

Key words: robotic milling, chatter identification, variational mode filtering, attention mechanism

中图分类号: