[1]JEAGER J C. Moving Source of Heat and the Temperature at Sliding Contacts[J]. Proceedings of the Royal Society of New South Wale, 1942, 76:203-224.
[2]贝季瑶. 磨削温度的分析与研究[J]. 上海交通大学学报, 1964(3):55-71.
BEI Jiyao. Analysis and Research on Grinding Temperature[J]. Journal of Shanghai Jiao Tong University, 1964(3):57-73.
[3]SNOEY R. Thermally Induced Damage in Grinding[J]. Annals of the CIRP, 1978, 27(1):571-581.
[4]JIN T, CAI G Q. Analytical Thermal Models of Oblique Moving Heat Source for Deep Grinding and Cutting[J]. Journal of Manufacturing Science and Engineering, 2001, 123(2):185-190.
[5]JIN T, ROWE W B, MCCORMACK D. Temperatures in Deep Grinding of Finite Workpieces[J]. International Journal of Machine Tools and Manufacture, 2002, 42(1):53-59.
[6]张磊. 单程平面磨削淬硬技术的理论分析和试验研究[D]. 济南:山东大学, 2006.
ZHANG Lei. Study on Mechanism and Experiment of Single-pass Surface Grind-hardening Technology[D]. Jinan:Shandong University, 2006.
[7]毛聪.平面磨削温度场及热损伤的研究[D]. 长沙:湖南大学, 2008.
MAO Cong. The Research on the Temperature Field and Thermal Damage in the Surface Grinding[D]. Changsha:Hunan University, 2008.
[8]WANG X Z, YU T B, SUN X, et al. Study of 3D Grinding Temperature Field Based on Finite Difference Method:Considering Machining Parameters and Energy Partition[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84:915-927.
[9]LIU M Z, LI C H, ZHANG Y B, et al. Analysis of Grain Tribology and Improved Grinding Temperature Model Based on Discrete Heat Source[J]. Tribology International, 2023, 180:108196.
[10]YANG S Y, CHEN W F, NONG S, et al. Temperature Field Modelling in the Form Grinding of Involute Gear Based on High-order Function Moving Heat Source[J]. Journal of Manufacturing Processes, 2022, 81:1028-1039.
[11]GRIMMERT A, PACHNEK F, WIEDERKEHR P. Temperature Modeling of Creep-feed Grinding Processes for Nickel-based Superalloys with Variable Heat Flux Distribution[J]. CIRP Journal of Manufacturing Science and Technology, 2023, 41:477-489.
[12]李晓强. 风电叶片磨削温度场建模与实验研究[D]. 天津:河北工业大学, 2019.
LI Xiaoqiang. Modeling and Experimental Research on Grinding Temperature Field of Wind Turbine Blades[D]. Tianjin:Hebei University of Technology, 2019.
[13]GUO Z F, YI J, HU X P, et al. Heat Flux Distribution Model and Transient Temperature Field Analysis in Grinding of Helical Raceway[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(9/10):6497-6506.
[14]吴少洋. 18CrNiMo7-6合金钢外圆及缺口磨削仿真研究与试验验证[D]. 郑州:郑州大学, 2022.
WU Shaoyang. Simulation Study and Experimental Verification of Cylindrical and Notch Grinding of 18CRNIMO7-6 Alloy Steel[D]. Zhengzhou:Zhengzhou University, 2022.
[15]孙坤. 高速列车轴箱轴承套圈磨削热与残余应力仿真研究[D]. 大连:大连交通大学, 2021.
SUN Kun. Simulation Study on Grinding Heat and Residual Stress of Axle Box Bearing Ring of High Speed Train[D]. Dalian:Dalian Jiaotong University, 2021.
[16]王小军. 机器人打磨风电叶片磨削温度变化规律研究[D]. 天津:河北工业大学, 2020.
WANG Xiaojun. Research on the Temperature Change Law of Robot Grinding of Wind Turbine Blades[D]. Tianjin:Hebei University of Technology, 2020.
[17]金光迪. 圆锥滚子轴承外圈滚道磨削加工表面粗糙度预测与温度场有限元仿真[D]. 济南:山东大学, 2023.
JIN Guangdi. Surface Roughness Prediction and Temperature Field Finite Element Simulation of Grinding Outer Ring Raceway of Tapered Roller Bearing[D]. Jinan:Shandong University, 2023.
[18]YI J, ZHOU W, DENG Z H. Experimental Study and Numerical Simulation of the Intermittent Feed High-speed Grinding of TC4 Titanium Alloy[J]. Metals, 2019, 9(7):802.
[19]李厦, 王锴霖. 超声振动辅助缓进给磨削温度场仿真与试验分析[J]. 表面技术, 2018, 47(7):265-269.
LI Xia, WANG Kailin. Simulation and Experimental Analysis of Ultrasonic Vibration Assisted Creep Feed Grinding Temperature Field[J]. Surface Technology, 2018, 47 (7):265-269.
[20]CHEN H, ZHAO J, DAI Y X, et al. Simulation of 3D Grinding Temperature Field by Using an Improved Finite Difference Method[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108:3871-3884.
[21]赵玲刚. 氮化硅陶瓷磨削温度与表面变质层的仿真与实验[J]. 机械与电子, 2021, 39(10):9-14.
ZHAO Linggang. Simulation and Experiment of Grinding Temperature and Surface Modification Layer of Silicon Nitride Ceramics[J]. Machinery & Electronics, 2021, 39 (10):9-14.
[22]LIN X J, XIN X P, SHAN X F, et al. Optimal Parameter Ranges of Material Removal Depth of Abrasive Cloth Wheel Polishing Based on Sensitivity Analysis[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105:5165-5179.
[23]WANG Z W, LIN X J, SHI Y Y, et al. Reducing Roughness of Freeform Surface through Tool Orientation Optimization in Multi-axis Polishing of Blisk[J]. International Journal of Advanced Manufacturing Technology, 2020, 108:917-929.
[24]XIAN C, SHI Y Y, LIN X J, et al. Experimental Study on Energy Partition of Polishing Aero-engine Blades with Abrasive Cloth Wheel[J]. International Journal of Advanced Manufacturing Technology, 2020, 106(5/6):1839-1853.
[25]XIAN C, SHI Y Y, LIN X J, et al. Roughness Modeling for Polishing an Aero-engine Blade with an Abrasive Cloth Wheel[J]. Journal of Mechanical Science and Technology, 2020, 34(8):3353-3361.
[26]XIAN C, SHI Y Y, LIN X J, et al. Force Modeling for Polishing Aero-engine Blades with Abrasive Cloth Wheels[J]. International Journal of Advanced Manufacturing Technology, 2020, 106(11/12):5255-5267.
[27]XIAN C, SHI Y Y, LIN X J, et al. Modeling Bulk Modulus of Abrasive Cloth Wheel and Polished Surface Roughness for Polishing Blade with Abrasive Cloth Wheel[J]. The International Journal of Advanced Manufacturing Technology, 2023, 128(11/12):5301-5314.
[28]ROWE W B. Thermal Analysis of High Efficiency Deep Grinding[J]. International Journal of Machine Tools and Manufacture, 2001, 41(1):1-19.
[29]陆子凤. 红外热像仪的辐射定标和测温误差分析[D].长春:中国科学院研究生院(长春光学精密机械与物理研究所), 2010.
LU Zifeng. Calibration and the Measurement Error Analysis of Infrared Imaging System for Temperature Measurement[D]. Changchun:Graduate School of Chinese Academy of Sciences (Changchun Institute of Optical Precision Machinery and Physics), 2010.
|