[1]TAN L, YAO C F, ZHANG D H, et al. Evolution of Surface Integrity and Fatigue Properties after Milling, Polishing, and Shot Peening of TC17 Alloy Blades[J]. International Journal of Fatigue, 2020, 136:105630.
[2]耿其东, 汪炜. 超声冲击强化铝合金小孔构件的试验研究[J]. 表面技术, 2019, 48(4):189-195.
GENG Qidong, WANG Wei. Experimental Study of Aluminium Alloy Hole Test Specimen Reinforced by Ultrasonic Impact[J]. Surface Technology, 2019, 48(4):189-195.
[3]AMANOV A, KARIMBAEV R, MALEKI E,et al. Effect of Combined Shot Peening and Ultrasonic Nanocrystal Surface Modification Processes on the Fatigue Performance of AISI 304[J]. Surface and Coatings Technology, 2019, 358:695-705.
[4]GUJBA A K, MEDRAJ M. Laser Peening Process and Its Impact on Materials Properties in Comparison with Shot Peening and Ultrasonic Impact Peening[J]. Materials, 2014, 7:7925-7974.
[5]PANIN A V, KAZACHENOK M S, KOZELSKAYS A I, et al. The Effect of Ultrasonic Impact Treatment on the Deformation Behavior of Commercially Pure Titanium under Uniaxial Tension[J]. Materials & Design, 2017, 117:371-381.
[6]OHTA T. Numerical Analysis of Effect of Pin Tip Radius on Residual Stress Distribution in Ultrasonic Impact Treatment[J]. Materials Transactions, 2018, 59(4):656-662.
[7]DEKHTYAR A I, MORDYUK B N, SAVVAKIN D G, et al. Enhanced Fatigue Behavior of Powder Metallurgy Ti-6Al-4V Alloy by Applying Ultrasonic Impact Treatment[J]. Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing, 2015, 641:348-359.
[8]查旭明, 袁智, 秦浩, 等. 钛合金超声冲击强化研究现状及发展趋势[J]. 中国机械工程, 2023, 34(19):2269-2287.
ZHA Xuming, YUAN Zhi, QIN Hao, et al. Ultrasonic Impact Strengthening of Titanium Alloys:State-of-the-art and Prospectives[J]. China Mechanical Engineering, 2023, 34(19):2269-2287.
[9]殷畅, 张平, 赵军军. 超声冲击对20Cr2Ni4A渗碳齿轮钢性能的影响[J]. 装甲兵工程学院学报, 2016, 30(4):88-90.
YIN Chang, ZHANG Ping, ZHAO Junjun. Effect of Ultrasonic Wave Impact on Properties of 20Cr2Ni4A Carburized Gear Steel[J]. Journal of Academy of Armored Force Engineering, 2016, 30(4):88-90.
[10]曹小建, 片英植, 金江, 等. 超声冲击强化对TC4钛合金拉压疲劳性能的影响[J]. 中国表面工程, 2017, 30(2):48-55.
CAO Xiaojian, PIAN Yingzhi, JIN Jiang, et al. Effects of Ultrasonic Impact Modification on Tension-compression Fatigue Behavior of TC4[J]. China Surface Engineering, 2017, 30(2):48-55.
[11]李凤琴, 赵波. 超声加工滚压力对钛合金表层特性的影响[J]. 表面技术, 2019, 48(10) :34-40.
LI Fengqin, ZHAO Bo. Effect of Ultrasonic Processing Burnishing Pressure on Titanium Alloy Surface Properties[J]. Surface Technology, 2019, 48(10) :34-40.
[12]TAN L, YAO C F, ZHANG D H, et al. Effects of Different Mechanical Surface Treatments on Surface Integrity of TC17 Alloys[J]. Surface and Coatings Technology, 2020, 398:126073.
[13]ZHOU Z, YAO C F, TAN L, et al. Experimental Study on Surface Integrity Refactoring Changes of Ti-17 under Milling-ultrasonic Rolling Composite Process[J]. Advances in Manufacturing, 2023, 11(3):492-508.
[14]WU D B, LV H R, WANG H, et al. Surface Micro-morphology and Residual Stress Formation Mechanisms of Near-net-shaped Blade Produced by Low-plasticity Ultrasonic Rolling Strengthening Process[J]. Materials and Design, 2022, 215:110513.
[15]WU D B, ZHENG Y, WANG H, et al. Formation Mechanism of Nano-crystal on the Blade Surface Produced by Low-plasticity Ultrasonic Rolling Strengthening Process[J]. Journal of Manufacturing Processes, 2023, 90:357-366.
[16]毛淼东. 超声滚压对Ti-6Al-4V合金高低周疲劳性能影响研究[D]. 上海:华东理工大学, 2018.
MAO Miaodong. Study on the Effect of Ultrasonic Deep Rolling on the Low- and High-cycle Fatigue Behavior of Ti-6Al-4V Alloy[D]. Shanghai:East China University of Science and Technology, 2018.
[17]MALEKI E, FARRAHI G H, KASHYZADEH K R, et al. Effects of Conventional and Severe Shot Peening on Residual Stress and Fatigue Strength of Steel AISI 1060 and Residual Stress Relaxation due to Fatigue Loading:Experimental and Numerical Simulation[J]. Metals and Materials International, 2021, 27:2575-2591.
[18]LEGUINAGOICOA N, ALBIZURI J, LARRANAGA A. Fatigue Improvement and Residual Stress Relaxation of Shot-peened Alloy Steel DIN 34CrNiMo6 under Axial Loading[J]. International Journal of Fatigue, 2022, 162:107006.
[19]钟丽琼, 严振, 梁益龙, 等. 残余应力场和不同应力比下TC11钛合金的高周疲劳性能[J]. 稀有金属材料与工程, 2015, 44(5):1224-1228.
ZHONG Liqiong, YAN Zhen, LIANG Yilong, et al. Property of High Cycle Fatigue of TC11 under Residual Stress and Different Stress Ratios[J]. Rare Metal Materials and Engineering, 2015, 44(5):1224-1228.
[20]GILL C M, FOX N, WITHERS P J. Shakedown of Deep Cold Rolling Residual Stresses in Titanium Alloys[J]. Journal of Physics D:Applied Physics, 2008, 41(17):174005.
[21]SAALFELD S, OEVERMANN T, NIENDORF T, et al.Consequences of Deep Rolling on the Fatigue Behavior of Steel SAE 1045 at High Loading Amplitudes[J]. International Journal of Fatigue, 2019, 118:192-201.
[22]HAN K P, TAN L, YAO C F, et al. Evolution and Anti-fatigue Mechanism of Surface Characteristics of Ti60 Alloy Induced by Ball Burnishing and Shot Peening during Tensile-compression Fatigue[J]. Engineering Failure Analysis, 2024, 159:108136.
[23]章海峰, 黄舒, 盛杰, 等. 激光喷丸IN718镍基合金残余应力高温松弛及晶粒演变特征[J]. 中国激光, 2016, 43(2):106-114.
ZHANG Haifeng, HUANG Shu, SHENG Jie, et al. Thermal Relaxation of Residual Stress and Grain Evolution in Laser Peening IN718 Alloy[J]. Chinese Journal of Lasers, 2016, 43(2):106-114.
[24]ZAROOG O S, ALI A, SAHARI B B, et al. Modeling of Residual Stress Relaxation of Fatigue in 2024-T351 Aluminium Alloy[J]. International Journal of Fatigue, 2011, 33(2):279-285.
[25]ZHANG J X, ZHANG J W, YANG B, et al. Very High-cycle Fatigue Properties and Residual Stress Relaxation of Micro-shot-peened EA4T Axle Steel[J]. Journal of Materials Engineering and Performance, 2019, 28(10):6407-6417.
[26]JIANG X P, MAN C S, SHEPARD M J, et al. Effects of Shot-peening and Re-shot-peening on Four-point Bend Fatigue Behavior of Ti-6Al-4V[J]. Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing, 2007, 458(SI):137-143.
[27]赵慧生, 陈国清, 盖鹏涛, 等. 拉-拉疲劳载荷下钛合金湿喷丸的残余应力松弛及再次喷丸工艺[J]. 材料工程, 2020, 48(5):136-143.
ZHAO Huisheng, CHEN Guoqing, GAI Pengtao, et al.Residual Stress Relaxation and Re-shot-peening Process of Wet Shot-peened Titanium Alloy during Tensile Fatigue Load[J]. Journal of Material Engineering, 2020, 48(5):136-143.
[28]孟岩, 黄栋, 冯振勇, 等. 不同组织TA15钛合金等温拉伸微裂纹扩展规律的有限元建模研究[J]. 塑性工程学报, 2017, 24(2):160-167.
MENG Yan, HUANG Dong, FENG Zhenyong, et al. Finite Element Modeling and Study on the Propagation Rules of Microcracks in TA15 Titanium Alloy with Different Microstructures during Isothermal Tension[J]. Journal of Plasticity Engineering, 2017, 24(2):160-167.
[29]金辉, 何柏林. 超声冲击技术强化机理的研究[J]. 热加工工艺, 2018, 47(16):18-22.
JIN Hui, HE Bolin. Research on Strengthening Mechanism of Ultrasonic Impact Technology[J]. Hot Working Technology, 2018, 47(16):18-22.
[30]YAO C F, CHEN J L, TAN L. Experimental Investigation on Surface Integrity and Fatigue Performance of Ti60 Alloy under Ultrasonic Impact Treatment[J]. Engineering Failure Analysis, 2024, 164:108639.
|