中国机械工程 ›› 2025, Vol. 36 ›› Issue (01): 133-140.DOI: 10.3969/j.issn.1004-132X.2025.01.014

• 智能制造 • 上一篇    下一篇

基于深度强化学习的混杂场景目标物体推抓协同策略

胡楷雄1;宋远航1;周勇1*;李卫东2   

  1. 1.武汉理工大学交通与物流工程学院,武汉,430063
    2.上海理工大学机械工程学院,上海,200093

  • 出版日期:2025-01-25 发布日期:2025-03-06
  • 作者简介:胡楷雄,男,1985年生,副教授。研究方向为智能制造。发表论文20余篇。E-mail:kaixiong.hu@whut.edu.cn。
  • 基金资助:
    国家自然科学基金(51975444)

A Cooperative Strategy for Pushing and Grasping Target Object in Cluttered Scenes Based on Deep Reinforcement Learning

HU Kaixiong1;SONG Yuanhang1;ZHOU Yong1*;LI Weidong2   

  1. 1.School of Transportation and Logistics Engineering,Wuhan University of Technology,
    Wuhan,430063
    2.School of Mechanical Engineering,Shanghai University of Technology,Shanghai,200093
  • Online:2025-01-25 Published:2025-03-06

摘要: 为提高机器人在混杂场景中抓取被遮挡目标物体的成功率和效率,提出一种基于深度强化学习的“推动”和“抓取”协同推抓策略。该策略利用两个深度Q网络,以RGB-D图像为输入来确定推动或抓取动作,并通过推动改变物体排列以优化抓取条件。该网络使用“抓推抓”三阶段模型训练方法显著提高了抓取能力。基于图像形态处理的方法识别并过滤低质量抓取动作,从而提高成功率和效率。实验结果表明,该方法有效提高了目标物体的抓取成功率和效率。

关键词: 机器人抓取, 混杂场景, 深度强化学习, 多动作协同

Abstract: To improve the success rate and efficiency of robotic grasping for occluded target objects in cluttered scenes, a collaborative push-grasp strategy was proposed based on deep reinforcement learning. The strategy employed 2 deep Q networks and used RGB-D images as inputs to determine push or grasp actions, which optimized object arrangement for better grasping conditions. A “grab-push-grab” three-stage training method was introduced in the model to enhance grasping capabilities significantly. An image morphology-based assessment method effectively identified and filtered low-quality grasp actions to increase successful rates and efficiency. Experimental results confirm that this method significantly enhances the successful rate and efficiency of grasping target objects.

Key words: robot grasping, cluttered scene, deep reinforcement learning, multi-action collaboration

中图分类号: