[1]DUAN Haonan, WANG Peng, HUANG Yayu, et al. Robotics Dexterous Grasping:the Methods Based on Point Cloud and Deep Learning[J]. Frontiers in Neurorobotics, 2021, 15:658280.
[2]BOHG J, MORALES A, ASFOUR T, et al. Data-driven Grasp Synthesis—a Survey[J]. IEEE Transactions on Robotics, 2014, 30(2):289-309.
[3]SAHBANI A, EL-KHOURY S, BIDAUD P. An Overview of 3D Object Grasp Synthesis Algorithms[J]. Robotics and Autonomous Systems, 2012, 60(3):326-336.
[4]LIANG Hongzhuo, MA Xiaojian, LI Shuang, et al. PointNetGPD:Detecting Grasp Configurations from Point Sets[C]∥2019 International Conference on Robotics and Automation(ICRA). Montreal, 2019:3629-3635.
[5]RODRIGUEZ A, MASON M T, FERRY S. From Caging to Grasping[J]. The International Journal of Robotics Research, 2012, 31(7):886-900.
[6]贺辉腾, 周勇, 胡楷雄, 等. 基于深度强化学习的机器人多动作协同抓取策略[J]. 计算机集成制造系统,2024,30(5):1789-1797.
HE Huiteng, ZHOU Yong, HU Kaixiong, et al. Robot Multi-action Cooperative Grasping Strategy Based on Deep Reinforcement Learning[J]. Computer Integrated Manufacturing Systems,2024,30(5):1789-1797.
[7]张胜文, 周曦, 李滨城, 等. 基于图像深度学习的零件加工特征信息提取方法[J]. 中国机械工程, 2022, 33(3):348-355.
ZHANG Shengwen, ZHOU Xi, LI Bincheng, et al. Information Extraction Method of Part Machining Features Based on Image Deep Learning[J]. China Mechanical Engineering, 2022, 33(3):348-355.
[8]王勇, 陈荟西, 冯雨齐. 基于改进 CenterNet 的机械臂抓取检测[J]. 中南大学学报(自然科学版), 2021, 52(9):3242-3250.
WANG Yong, CHEN Huixi, FENG Yuqi. Robotic Grasping Detection Based on Improved CenterNet[J]. Journal of Central South University(Science and Technology), 2021, 52(9):3242-3250.
[9]张翰博, 兰旭光, 周欣文, 等. 基于视觉推理的机器人多物体堆叠场景抓取方法[J]. 中国科学(技术科学), 2018, 48(12):1341-1356.
ZHANG Hanbo, LAN Xuguang, ZHOU Xinwen, et al. Robotic Grasping in Multi-object Stacking Scenes Based on Visual Reasoning[J]. Scientia Sinica(Technologica), 2018, 48(12):1341-1356.
[10]孙先涛, 唐思宇, 陈文杰, 等. 复杂环境下基于推抓协同操作的目标物体抓取[J]. 控制理论与应用,2023,40(10):1713-1720.
SUN Xiantao, TANG Siyu, CHEN Wenjie, et al. Target Object Grasp Based on Push-grasp Cooperative Operation in Complex Environment[J]. Control Theory & Applications, 2023,40(10):1713-1720.
[11]李鑫, 沈捷, 曹恺, 等. 深度强化学习的机械臂密集场景多物体抓取方法[J/OL]. 计算机工程与应用,2019:1-9[2023-10-23].http:∥kns.cnki.net/kcms/detail/11.2127.TP.20231008.1644.008.html.
LI Xin, SHEN Jie, CAO Kai, et al. Deep Reinforcement Learning for Manipulator Multi-object Grasping in Dense Scenes[J/OL]. Computer Engineering and Applications, 2019:1-9[2023-10-23].http:∥kns.cnki.net/kcms/detail/11.2127.TP.20231008.1644.008.html.
[12]TEN PAS A, PLATT R. Using Geometry to Detect Grasp Poses in 3D Point Clouds[M]∥Robotics Research. Cham:Springer, 2018:307-324.
[13]ZENG A, SONG Shuran, WELKER S, et al. Learning Synergies between Pushing and Grasping with Self-supervised Deep Reinforcement Learning[C]∥2018 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Madrid, 2018:4238-4245.
[14]DENG Yuhong, GUO Xiaofeng, WEI Yixuan, et al. Deep Reinforcement Learning for Robotic Pushing and Picking in Cluttered Environment[C]∥2019 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS). Macau, 2019:619-626.
[15]TANG Bingjie, CORSARO M, KONIDARIS G, et al. Learning Collaborative Pushing and Grasping Policies in Dense Clutter[C]∥2021 IEEE International Conference on Robotics and Automation(ICRA). Xian, 2021:6177-6184.
[16]YANG Yang, LIANG Hengyue, CHOI C. A Deep Learning Approach to Grasping the Invisible[J]. IEEE Robotics and Automation Letters, 2020, 5(2):2232-2239.
[17]XU Kechun, YU Hongxiang, LAI Qianen, et al. Efficient Learning of Goal-oriented Push-grasping Synergy in Clutter[J]. IEEE Robotics and Automation Letters, 2021, 6(4):6337-6344.
[18]HUANG Gao, LIU Zhuang,van der MAATEN L, et al. Densely Connected Convolutional Networks[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu, 2017:2261-2269.
[19]DENG Jia, DONG Wei, SOCHER R, et al. ImageNet:a Large-scale Hierarchical Image Database[C]∥2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, 2009:248-255.
[20]NAIR V, HINTON G E. Rectified Linear Units Improve Restricted Boltzmann Machines[C]∥Proceedings of the 27th International Conference on Machine Learning(ICML-10). Haifa,2010:807-814.
[21]IOFFE S, SZEGEDY C. Batch Normalization:Accelerating Deep Network Training by Reducing Internal Covariate Shift[J]. 32nd International Conference on Machine Learning. Lille, 2015:448-456.
[22]KINGMA D P, BA J. Adam:a Method for Stochastic Optimization[EB/OL]. 2014:arXiv:1412.6980. http:∥arxiv.org/abs/1412.6980
|