[1]姜一啸, 吉卫喜, 何鑫, 等. 基于改进非支配排序遗传算法的多目标柔性作业车间低碳调度[J]. 中国机械工程, 2022, 33(21):2564-2577.
JIANG Yixiao, JI Weixi, HE Xin, et al. Low-carbon Scheduling of Multi-objective Flexible Job-shop Based on Improved NSGA-Ⅱ[J]. China Mechanical Engineering, 2022, 33(21):2564-2577.
[2]PARK J, CHUN J, KIM S H, et al. Learning to Schedule Job-shop Problems:Representation and Policy Learning Using Graph Neural Network and Reinforcement Learning[J]. International Journal of Production Research, 2021, 59(11):3360-3377.
[3]马雪梅, 胡良元, 沈艳波, 等. 我国航天工业能力布局回顾与展望[J]. 航天工业管理, 2019(10):75-80.
MA Xuemei, HU Liangyuan, SHEN Yanbo, et al.Review and Prospect of Chinas Aerospace Industry Capability Layout[J].Aerospace Industry Management,2019(10):75-80.
[4]李新宇, 黄江平, 李嘉航, 等. 智能车间动态调度的研究与发展趋势分析[J]. 中国科学:技术科学, 2023, 53(7):1016-1030.
LI Xinyu, HUANG Jiangping, LI Jiahang, et al. Research and Development Trend of Intelligent Shop Dynamic Scheduling[J]. Chinese Science:Technology Science, 2023, 53(7):1016-1030.
[5]乔东平, 裴杰, 文笑雨, 等. 一种求解单机总加权延迟调度问题的改进蚁群算法[J]. 中国机械工程, 2018, 29(22):2703-2710.
QIAO Dongping, PEI Jie, WEN Xiaoyu, et al. An Improved Ant Colony Algorithm for Solving Single Machine Total Weighted Delay Scheduling Problem[J]. China Mechanical Engineering, 2018, 29(22):2703-2710.
[6]黄学文, 陈绍芬, 周阗玉, 等. 求解柔性作业车间调度的遗传算法综述[J]. 计算机集成制造系统, 2022, 28(2):536-551.
HUANG Xuewen, CHEN Shaofen, ZHOU Tianyu, et al. Survey on Genetic Algorithms for Solving Flexible Job-shop Scheduling Problem[J].Computer Integrated Manufacturing Systems,2022,28(2):536-551.
[7]CHEN B, MATIS T. A Flexible Dispatching Rule for Minimizing Tardiness in Job Shop Scheduling[J]. International Journal of Production Economics, 2013, 141(1):360-365.
[8]李益兵, 黄炜星, 吴锐. 基于改进人工蜂群算法的多目标绿色柔性作业车间调度研究[J]. 中国机械工程, 2020, 31(11):1344-1350.
LI Yibing, HUANG Weixing, WU Rui. Research on Multi-objective Green Flexible Job-shop Scheduling Based on Improved ABC Algorithm[J]. China Mechanical Engineering, 2020, 31(11):1344-1350.
[9]ZHAO N, YE S, LI K, et al. Effective Iterated Greedy Algorithm for Flow-shop Scheduling Problems with Time Lags[J]. Chinese Journal of Mechanical Engineering, 2017, 30(3):652-662.
[10]王秋莲, 段星皓. 基于高维多目标候鸟优化算法的柔性作业车间调度[J]. 中国机械工程, 2022, 33(21):2601-2612.
WANG Qiulian, DUAN Xinghao. Scheduling of Flexible Job Shop Based on High-dimension and Multi-objective Migrating Bird Optimization Algorithm[J]. China Mechanical Engineering, 2022, 33(21):2601-2612.
[11]DU Y, LI J, LI C, et al. A Reinforcement Learning Approach for Flexible Job Shop Scheduling Problem with Crane Transportation and Setup Times[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 35(4):5695-5709.
[12]贺俊杰, 张洁, 张朋, 等. 基于长短期记忆近端策略优化强化学习的等效并行机在线调度方法[J]. 中国机械工程, 2022, 33(3):329-338.
HE Junjie, ZHANG Jie, ZHANG Peng, et al. Related Parallel Machine Online Scheduling Method Based on LSTM-PPO Reinforcement Learning[J]. China Mechanical Engineering, 2022, 33(3):329-338.
[13]XUE T, ZENG P, YU H. A Reinforcement Learning Method for Multi-AGV Scheduling in Manufacturing[C]∥2018 IEEE International Conference on Industrial Technology(ICIT). Lyon, 2018:1557-1561.
[14]WEI Y, PAN L, LIU S, et al. DRL-scheduling:an Intelligent QoS-aware Job Scheduling Framework for Applications in Clouds[J]. IEEE Access, 2018, 6:55112-55125.
[15]钟敬伟, 石宇强. 基于DQN的智能工厂作业车间调度[J]. 现代制造工程, 2021(9):17-23.
ZHONG Jingwei, SHI Yuqiang. Job Shop Scheduling Based on DQN Algorithm in Intelligent Factory[J].Modern Manufacturing Engineering,2021(9):17-23.
[16]HE Z, KIM P T, SEBASTIEN T, et al. Multi-objective Optimization of the Textile Manufacturing Process Using Deep-Q-network Based Multi-agent Reinforcement Learning[J]. Journal of Manufacturing Systems, 2022,62:939-949.
[17]LUO S. Dynamic Scheduling for Flexible Job Shop with New Job Insertions by Deep Reinforcement Learning[J]. Applied Soft Computing, 2020, 91:106208.
[18]WANG Y, LIU H, ZHENG W, et al. Multi-objective Workflow Scheduling with Deep-Q-network-based Multi-agent Reinforcement Learning[J]. IEEE Access, 2019, 7:39974-39982.
[19]刘亚辉, 申兴旺, 顾星海, 等. 面向柔性作业车间动态调度的双系统强化学习方法[J]. 上海交通大学学报, 2022, 56(9):1262-1275.
LIU Yahui, SHEN Xingwang, GU Xinghai, et al.A Dual-system Reinforcement Learning Approach for Dynamic Scheduling of Flexible Job Shops[J].Journal of Shanghai Jiao Tong University,2022,56(9):1262-1275.
[20]张凯, 毕利, 焦小刚. 集成强化学习算法的柔性作业车间调度问题研究[J]. 中国机械工程, 2023, 34(2):201-207.ZHANG Kai, BI Li, JIAO Xiaogang. Research on Flexible Job-shop Scheduling Problems with Integrated Reinforcement Learning Algorithm[J]. China Mechanical Engineering, 2023, 34(2):201-207.
[21]胡一凡, 张利平, 白雪, 等. 深度强化学习求解柔性装配作业车间调度问题[J]. 华中科技大学学报, 2023, 51(2):153-160.
HU Yifan, ZHANG Liping, BAI Xue, et al. Deep Reinforcement Learning for Solving Flexible Assembly Workshop Scheduling Problem[J]. Journal of Huazhong University of Science and Technology, 2023, 51(2):153-160.
[22]VAN HASSELT H, GUEZ A, SILVER D. Deep Reinforcement Learning with Double Q-learning[C]∥Proceedings of the AAAI Conference on Artificial Intelligence. Phoenix, 2016:2094-2100.
[23]LIU Peng, XIA Boyuan, YANG Zhiwei, et al. A Deep Reinforcement Learning Method for Multi-stage Equipment Development Planning in Uncertain Environments[J]. Journal of Systems Engineering and Electronics, 2022, 33(6):1159-1175.
|