中国机械工程 ›› 2024, Vol. 35 ›› Issue (03): 457-471.DOI: 10.3969/j.issn.1004-132X.2024.03.008

• 智能制造 • 上一篇    下一篇

考虑双资源约束的柔性机械加工车间逆调度问题研究

魏书鹏1,2;唐红涛1,2;李西兴3,4;杨冠宇5;张健6


  

  1. 1.武汉理工大学机电工程学院,武汉,430070
    2.机器人与智能制造湖北省工程研究中心,武汉,430070
    3.湖北工业大学机械工程学院,武汉,430068
    4.湖北工业大学现代制造质量工程湖北省重点实验室,武汉,430068
    5.武汉理工大学船海与能源动力工程学院,武汉,430070
    6.中国中材国际工程股份有限公司,南京,211100

  • 出版日期:2024-03-25 发布日期:2024-04-23
  • 通讯作者: 唐红涛(通信作者),男,1987年生,副教授、博士研究生导师。研究方向为智能优化算法及制造企业信息化应用等。E-mail:tanghongtaozc@163.com。
  • 作者简介:魏书鹏,男,1999年生,硕士研究生。研究方向为生产调度理论与智能优化。
  • 基金资助:
    国家自然科学基金(51805152,52075401);湖北省自然科学基金(2022CFB445);湖北工业大学高层次人才科研基金(GCRC2020009)

Dual-resource Constrained Flexible Machining Workshop Inverse Scheduling Problem

WEI Shupeng1,2;TANG Hongtao1,2;LI Xixing3,4;YANG Guanyu5;ZHANG Jian6   

  1. 1.School of Mechanical and Electronic Engineering,Wuhan University of Technology,Wuhan,430070
    2.Hubei Provincial Engineering Research Center of Robotics and Intelligent Manufacturing,
    Wuhan,430070
    3.School of Mechanical Engineering,Hubei University of Technology,Wuhan,430068
    4.Hubei Key Laboratory of Modern Manufacturing and Quality Engineering,Hubei University of
    Technology,Wuhan,430068
    5.School of Naval Architecture,Ocean and Energy Power Engineering,Wuhan University of
    Technology,Wuhan,430070
    6.Sinoma International Engineering Co.,Ltd.,Nanjing,211100

  • Online:2024-03-25 Published:2024-04-23

摘要: 为提高机械加工车间在动态生产环境下的效率和稳定性,建立了考虑机器与工人约束的柔性机械加工车间逆调度问题模型。该模型以最小化完工时间、机器能耗和逆偏差指数为目标,通过调整工件排产、工人作业以及机加工工艺参数对原始调度方案进行优化。针对问题特征,提出了一种差分进化算法。在算法中,设计了混合双层编码方式以降低搜索难度;提出了两种基于调度规则的初始化方式以提高种群质量;为加强和平衡全局与局部搜索,设计了自适应遗传操作以及基于精英选择的局部搜索策略;改进了哈明距离,并提出了一种拥挤度算子以反映种群真实多样性。在实验中构建了33组测试算例,并将所提算法与其他7种算法进行对比,验证了所提算法性能。最后,分析了某液压缸生产车间在两种不同动态环境下的真实逆调度案例,结果表明,所提算法能够在较小程度改变原始调度的情况下缩短4.2%的完工时间、降低20.2%的机器能耗。

关键词: 双资源约束柔性作业车间调度, 机械加工车间, 逆调度, 多目标优化, 差分进化算法

Abstract: In order to improve the efficiency and stability of machining workshops in dynamic production environments, an inverse scheduling problem model of flexible machining workshops was established considering machine and worker constraints. The model aimed to minimize makespan, machine energy consumption and inverse deviation index by adjusting workpiece scheduling, worker work, and machining parameters. Aiming at the problem characteristics, an improved differential evolution algorithm was proposed. In the algorithm, a hybrid double-layer encoding method was designed to reduce the search difficulty. Two initialization methods were proposed to improve the population quality based on dispatching rules. In order to strengthen and balance the global and local search, adaptive genetic operations and neighborhood search strategies were designed based on elite selection. The Hamming distance was improved, and a crowding operator was proposed to reflect the true diversity of the population. In the experiment, 33 test instances were constructed and the proposed algorithm was compared with the other 7 algorithms to verify the performance. Finally, the real inverse scheduling cases of a hydraulic cylinder production workshop in two different dynamic environments were analyzed. The results show that the proposed algorithm may effectively reduce the makespan by 4.2 % and the machine energy consumption by 20.2 % with a little change in the original schedule.

Key words: dual-resource constrained flexible job shop scheduling, machining workshop, inverse scheduling, multi-objective optimization, differential evolution algorithm

中图分类号: