中国机械工程 ›› 2025, Vol. 36 ›› Issue (12): 2846-2853.DOI: 10.3969/j.issn.1004-132X.2025.12.005
• 机械基础工程 • 上一篇
收稿日期:2024-12-29
出版日期:2025-12-25
发布日期:2025-12-31
通讯作者:
范增华
作者简介:杨自豪,男,2000年生,硕士研究生。研究方向为精密与超精密加工技术。E-mail:15762052012@163.com基金资助:
Zihao YANG(
), Zenghua FAN(
), Xiang ZHANG, Jun GAO
Received:2024-12-29
Online:2025-12-25
Published:2025-12-31
Contact:
Zenghua FAN
摘要:
提出基于化学辅助的磁性剪切增稠抛光方法,设计并制备了一种新型抛光液。采用单因素实验方案研究了H2O2质量分数、pH值和表面活性剂质量分数对钛合金(TA2)管内表面粗糙度的影响规律。在H2O2质量分数为0.1%、pH值为5和表面活性剂质量分数为0.3%的最佳条件下,经过90 min的抛光,钛合金管内表面的表面粗糙度Ra从701 nm降低至56 nm。扫描电镜和超景深显微镜观测发现,化学辅助磁性剪切增稠抛光方法能够显著减少加工过程中产生的凸峰和划痕,获得无缺陷的光滑表面。
中图分类号:
杨自豪, 范增华, 张翔, 高军. 钛合金管内表面的化学辅助磁性剪切增稠抛光实验研究[J]. 中国机械工程, 2025, 36(12): 2846-2853.
Zihao YANG, Zenghua FAN, Xiang ZHANG, Jun GAO. Research on Chemical-assisted Magnetorheological Shear Thickening Polishing of Titanium Alloy Tube Inner Surfaces[J]. China Mechanical Engineering, 2025, 36(12): 2846-2853.
| 参数名称 | 数值 |
|---|---|
| 工件转速/(r·min-1) | 1000 |
| 进给速度/(mm·min-1) | 100 |
| H2O2质量分数/% | 0.05,0.10,0.15 |
| pH值 | 3,5,7,9 |
| 表面活性剂质量分数/% | 0.1,0.3,0.5 |
| 测量时间/min | 15,30,45,60,75,90 |
| 磨粒尺寸/μm | 30 |
| CIPs尺寸/μm | 100 |
| PHHP 质量分数/% | 40 |
| 初始表面粗糙度Ra/nm | 680~720 |
| 工件尺寸/mm | ϕ7×285 |
| 工件材料 | TA2钛合金 |
表1 实验参数
Tab.1 Experimental parameters
| 参数名称 | 数值 |
|---|---|
| 工件转速/(r·min-1) | 1000 |
| 进给速度/(mm·min-1) | 100 |
| H2O2质量分数/% | 0.05,0.10,0.15 |
| pH值 | 3,5,7,9 |
| 表面活性剂质量分数/% | 0.1,0.3,0.5 |
| 测量时间/min | 15,30,45,60,75,90 |
| 磨粒尺寸/μm | 30 |
| CIPs尺寸/μm | 100 |
| PHHP 质量分数/% | 40 |
| 初始表面粗糙度Ra/nm | 680~720 |
| 工件尺寸/mm | ϕ7×285 |
| 工件材料 | TA2钛合金 |
| 参数 | CMSTPs | MSTPs |
|---|---|---|
| PHHP 质量分数/% | 40 | 40 |
| CIPs 质量分数/% | 5 | 5 |
| SiC 质量分数/% | 15 | 15 |
| 去离子水质量分数/% | 39.6 | 40 |
| pH 值 | 5 | 7 |
| H2O2 质量分数/% | 0.1 | |
| 表面活性剂质量分数/% | 0.3 |
表2 抛光液的具体成分参数
Tab.2 Composition parameters of polishing slurry
| 参数 | CMSTPs | MSTPs |
|---|---|---|
| PHHP 质量分数/% | 40 | 40 |
| CIPs 质量分数/% | 5 | 5 |
| SiC 质量分数/% | 15 | 15 |
| 去离子水质量分数/% | 39.6 | 40 |
| pH 值 | 5 | 7 |
| H2O2 质量分数/% | 0.1 | |
| 表面活性剂质量分数/% | 0.3 |
| [1] | GAO K, ZHANG Y, JUN H, et al. Overview of Surface Modification Techniques for Titanium Alloys in Modern Material Science: a Comprehensive Analysis[J]. Coatings, 2024, 14(1):148. |
| [2] | CARVALHO R S, HOROVISTIZ A, DAVIM P J. The Role of Roughness Parameters in Grading the Machined Surface Quality in Ti-alloys[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2024, 238(6/7):1013-1029. |
| [3] | CHAUDHARI G S, HARNE S M P. A Review on Optimization of Machining Parameters in Cylindrical Grinding Process[J]. International Journal of Engineering Research and, 2015, 4(4):684-686. |
| [4] | LUO H, AJMAL M, LIU W, et al. Polishing and Planarization of Single Crystal Diamonds:State-of-the-art and Perspectives[J]. International Journal of Extreme Manufacturing, 2021, 3(2):49-91. |
| [5] | KUMAR R, KOMMA R. Development and Experimental Investigation of Magnetic Abrasive Finishing of 17-4PH Steel[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2024, 238(10):4463-4476. |
| [6] | ZHANG J, WANG H. Magnetically Driven Internal Finishing of AISI 316L Stainless Steel Tubes Generated By Laser Powder Bed Fusion[J]. Journal of Manufacturing Processes, 2022, 76:155-166. |
| [7] | CAO C, ZHAO Y, ZHANG G, et al. Experimental Study of Plastic Cutting in Laser-assisted Machining of SiC Ceramics[J]. Optics and Laser Technology, 2024:169. |
| [8] | ZHANG Z, LIU J, HU W, et al. Chemical Mechanical Polishing for Sapphire Wafers Using a Developed Slurry[J]. Journal of Manufacturing Processes, 2021, 62:762-71. |
| [9] | LIAO L X, ZHANG Z Y, MENG F N, et al. A Novel Slurry for Chemical Mechanical Polishing of Single Crystal Diamond[J]. Applied Surface Science, 2021, 564:150431. |
| [10] | LYU B, HE K, CHEN H, et al. Experimental Study on Shear Thickening Polishing of Cemented Carbide Insert with Complex Shape[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(1/4):585-595. |
| [11] | LI M, KARPUSCHEWSKI B, OHMORI H. High-efficiency Nano Polishing of Steel Materials[J]. Nanotechnology Reviews, 2021, 10:1329-38. |
| [12] | 陈士豪,吕冰海,贺乾坤, 等. 圆柱曲面剪切增稠抛光材料去除函数仿真与实验研究[J]. 表面技术, 2019, 48(10):355-362. |
| CHEN Shihao, Binghai LYU, HE Qiankun, et al. Simulation and Experimental Study on Material Removal Function of Shear Thickening Polishing Cylindrical Surface[J]. Surface Technology, 2019, 48(10):355-362. | |
| [13] | 柯明峰,吕冰海,邵蓝樱, 等. 硬质合金刀片前刀面的剪切增稠抛光实验研究[J]. 表面技术, 2022, 51(1):220-228. |
| KE Mingfeng, Binghai LYU, SHAO Lanying, et al. Experimental Study on Shearing Thickening Polishing of Rake Surface of Cemented Carbide Inserts[J]. Surface Technology, 2022, 51(1):220-228 | |
| [14] | FAN Z, TIAN Y, ZHOU Q, et al. A Magnetic Shear Thickening Media in Magnetic Field-assisted Surface Finishing[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2020, 234(6/7):1069-72. |
| [15] | FAN Z, TIAN Y, ZHOU Q, et al. Enhanced Magnetic Abrasive Finishing of Ti-6Al-4V Using Shear Thickening Fluids Additives[J]. Precision Engineering, 2020, 64:300-306. |
| [16] | FAN Z, TIAN Y, LIU Z Q, et al. Investigation of a Novel Finishing Tool in Magnetic Field Assisted Finishing for Titanium Alloy Ti-6Al-4V[J]. Journal of Manufacturing Processes, 2019, 43:74-82. |
| [17] | SUN Z, FAN Z, TIAN Y, et al. Post-processing of Additively Manufactured Microstructures Using Alternating-magnetic Field-assisted Finishing[J]. Journal of Materials Research and Technology, 2022, 19:1922-33. |
| [18] | LI J, FAN Z, YANG Z, et al. Simulation and Modeling of Magnetorheological Shear Thickening Polishing Processes for Slender Tube[J]. Journal of Materials Research and Technology, 2023, 25480-496. |
| [19] | SHINMURA T, TAKAZAWA K, HATANO E, et al. Study on Magnetic Abrasive Finishing[J]. CIRP Journal of Manufacturing Science and Technology, 1990, 39(1):325-328. |
| [20] | ANDERSON D, WARKENTIN A, BAUER R. Simulation of Deep Spherical Indentation Using Eulerian Finite Element Methods[J]. Journal of Tribology, 2011, 133(2):021401. |
| [21] | LEE H, JEONG H. A Wafer-scale Material Removal Rate Profile Model for Copper Chemical Mechanical Planarization[J]. International Journal of Machine Tools and Manufacture, 2011, 51(5):395-404. |
| [1] | 李文倩, 刘战强, 赵金富, 王兵, 蔡玉奎. 干气密封动环表面的螺旋槽纳秒激光制备[J]. 中国机械工程, 2025, 36(10): 2207-2214. |
| [2] | 李姗姗, 孙兴伟, 杨恒, 乔赫廷. 磁流变液环境下密封副非线性磨损行为研究[J]. 中国机械工程, 2025, 36(09): 1968-1979. |
| [3] | 李路骋, 王振忠, 黄雪鹏. 基于模糊阻抗控制的机器人气囊抛光恒力控制系统研究[J]. 中国机械工程, 2025, 36(05): 1028-1034. |
| [4] | 鲜超1, 3, 辛红敏2, 3, 代辉2, 程清思2. 砂布轮抛光航空发动机叶片温度仿真与试验研究[J]. 中国机械工程, 2025, 36(04): 802-810. |
| [5] | 郭路广1, 2, 戴卓豪1, 王东峰1, 3, 王旭1, 吕冰海1, 袁巨龙1. 力流变工艺对轴承滚道表面质量与精度的影响[J]. 中国机械工程, 2025, 36(02): 271-279. |
| [6] | 杨赫然1, 2, 张培杰1, 2, 孙兴伟1, 2, 潘飞1, 2, 刘寅1, 2. 利用改进卷积神经网络的螺杆砂带磨削表面粗糙度预测[J]. 中国机械工程, 2025, 36(02): 325-332. |
| [7] | 鄢威1, 3, 王欣怡2, 3, 张华3, 朱硕2, 3, 江志刚2, 3. 考虑切削能耗和表面质量的碳纤维增强树脂基复合材料加工工艺参数优化决策[J]. 中国机械工程, 2024, 35(10): 1834-1844. |
| [8] | 徐成宇, 张万一, 张天鸿, 朱永伟. 固结磨料小工具头修形抛光钛合金叶片试验研究[J]. 中国机械工程, 2024, 35(09): 1606-1612. |
| [9] | 靳淇超1, 2, 包虎子1, 李良万3, 汪文虎3, 张锦淇1, 叶子银1, 郭磊1. DD5缓进磨削表面粗糙度和硬化率对疲劳性能影响研究[J]. 中国机械工程, 2024, 35(08): 1472-1479. |
| [10] | 付振峰, 王振忠, 王彪. 微流控芯片流体动压抛光工艺研究[J]. 中国机械工程, 2024, 35(03): 534-540. |
| [11] | 袁巧玲, 丁杰, 孔凡志, 文东辉, 齐欢. 复合螺旋磨粒流流场特性的研究[J]. 中国机械工程, 2024, 35(02): 251-259. |
| [12] | 张其聪, 姜晨, 叶卉, 申岭鑫, 矫梦蝶. 动压辅助非牛顿流体抛光工具设计与工艺研究[J]. 中国机械工程, 2023, 34(23): 2805-2811,2823. |
| [13] | 贾志新, 张凯悦, 王津. 聚晶金刚石的混铁粉电火花加工方法研究[J]. 中国机械工程, 2023, 34(22): 2684-2692. |
| [14] | 王明, 董海, 王柏何, 王峥, 王加威. 2.5D Cf/SiC刹车材料浮动磨削工艺试验研究[J]. 中国机械工程, 2023, 34(20): 2434-2441. |
| [15] | 谢重, 文东辉, 成志超, 孔凡志. 线性液动压抛光流场的循环交变动压力衍生机制[J]. 中国机械工程, 2023, 34(19): 2288-2295. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||