中国机械工程 ›› 2025, Vol. 36 ›› Issue (9): 2057-2067.DOI: 10.3969/j.issn.1004-132X.2025.09.018

• 智能制造 • 上一篇    

以热图像为输入的基于ResNet的机床主轴热误差建模方法

李明范1,2(), 杨龙3,4, 李晟5, 郭欢6, 付国强3,4()   

  1. 1.浙江水利水电学院机械工程学院, 杭州, 310018
    2.浙江水利水电学院机械工业水力发电水泵水轮机技术重点实验室, 杭州, 310018
    3.西南交通大学机械工程学院, 成都, 610031
    4.智能制造龙城实验室, 常州, 213000
    5.宏龙科技(杭州)有限公司, 杭州, 310000
    6.河南省豫冠安全发展有限公司, 郑州, 450000
  • 收稿日期:2024-08-13 出版日期:2025-09-25 发布日期:2025-10-15
  • 通讯作者: 付国强
  • 作者简介:李明范,男,1976 年生,博士、高级工程师。研究方向为机电一体化产品开发、传感与检测技术。E-mail:Leesapper@163.com
    付国强*(通信作者),男,1988 年生,副教授、博士研究生导师。主要研究方向为复杂高端装备精度提升理论与技术,复杂高端装备热、力、几何等多误差源误差测量装置及方法。E-mail:fuguoqiang@swjtu.edu.cn
  • 基金资助:
    国家自然科学基金(52175486);智能制造龙城实验室开放课题(LK202404);浙江省自然科学基金公益项目(LGG21F010004);机械传动国家重点实验室开放基金(SKLMT-MSKFKT-202201);中央高校基本科研业务费(2682024ZTPY028)

Thermal Image Input-based ResNet Method for Thermal Error Modeling of Machine Tool Spindles

Mingfan LI1,2(), Long YANG3,4, Sheng LI5, Huan GUO6, Guoqiang FU3,4()   

  1. 1.College of Mechanical Engineering,Zhejiang University of Water Resources and Electric Power,Hangzhou,310018
    2.Key Laboratory of Key Technologies for Mechanical Industry Hydroelectric Power Generation Pump Turbine,Zhejiang University of Water Resources and Electric Power,Hangzhou,310018
    3.School of Mechanical Engineering,Southwest Jiaotong University,Chengdu,610031
    4.Intelligent Manufacturing Dragon City Laboratory,Changzhou,Jiangsu,213000
    5.Linker Technology Research Co. ,Ltd. ,Hangzhou,310000
    6.Henan Yuguan Safety Development Co. ,Ltd. ,Zhengzhou,450000
  • Received:2024-08-13 Online:2025-09-25 Published:2025-10-15
  • Contact: Guoqiang FU

摘要:

为了获得高精度高泛化的机床热误差模型,提出了以热图像为输入的基于ResNet的数控机床主轴热误差建模方法。构建以热误差取整为标签的热图像数据集,训练以热图像为输入的热误差ResNet分类预测模型。在此基础上,针对机床热误差时序序列的回归特性,将分类输出层的不同标签值对应的概率通过加权集成方式构建回归输出层,实现热误差回归预测,无需重新训练。对热图像深度特征和ResNet分类模型的分类效果进行可视化分析,验证ResNet模型对热图像特征提取的有效性以及良好的分类能力。最后,将ResNet模型与GoogLeNet和VGGNet模型在不同工况下进行比较,分别验证ResNet热误差分类模型和回归模型的高精度和高泛化性。

关键词: 热图像, 主轴热误差, ResNet分类模型, 回归预测, 特征可视化

Abstract:

To achieve a high-precision and highly generalizable thermal error model of machine tools, a thermal image input-based ResNet method was proposed for thermal error modeling of CNC machine tool spindles. A thermal image dataset labelled was constructed with thermal error rounding, and a ResNet-based classification model was trained for thermal error prediction using thermal images as inputs. Considering the regression characteristics of the machine tool thermal error time series, a regression output layer was constructed by integrating the probabilities of different classification labels from the classification output layer in a weighted manner, enabling thermal error regression prediction without retraining. The deep features of thermal images and the classification performance of the ResNet model were visualized, confirming the effectiveness of ResNet in feature extraction and strong classification ability. Finally, the ResNet model was compared with GoogLeNet and VGGNet models under different operating conditions, demonstrating the high accuracy and generalization of the ResNet-based thermal error classification and regression models.

Key words: thermal image, spindle thermal error, ResNet classification model, regression prediction, feature visualization

中图分类号: