中国机械工程 ›› 2025, Vol. 36 ›› Issue (10): 2312-2321.DOI: 10.3969/j.issn.1004-132X.2025.10.019

• 机械基础工程 • 上一篇    

SiC硬脆材料纳米切削的亚表层损伤与塑性去除机理探析

陈晶晶(), 陈莎, 朱海燕, 袁军军, 罗泽宇   

  1. 南昌理工学院机械表/界面摩擦磨损与防护润滑研究中心, 南昌, 330044
  • 收稿日期:2025-02-07 出版日期:2025-10-25 发布日期:2025-11-05
  • 通讯作者: 陈晶晶
  • 作者简介:陈晶晶*(通信作者),男,1989年生,校聘副教授。研究方向为机械表/界面摩擦磨损与防护润滑。发表论文30余篇。E-mail:chenjingjingfzu@126.com
    第一联系人:刘兴旺*(通信作者),男,1970年生,副教授。研究方向为制冷系统及涡旋压缩机的优化。发表论文40余篇。E-mail:liuxw@lut.edu.cn
  • 基金资助:
    国家自然科学基金(62563030);江西省教育厅科学技术研究项目(GJJ2402622);江西省教育厅科学技术研究项目(GJJ2402616);南昌理工学院科研课题(NLZK2418);南昌理工学院科研课题(NLZK2446);基于“竞赛+项目”的机械类学生双创能力培养体系构建项目(NLJG-24-21)

Mechanism Analysis of Material Remove and Subsurface Layer Damages for SiC during Nanocutting Processes

Jingjing CHEN(), Sha CHEN, Haiyan ZHU, Junjun YUAN, Zeyu LUO   

  1. Mechanical Friction Wear and Protective Lubrication Research Center on Surface/Interface,Nanchang Institute of Technology,Nanchang,330044
  • Received:2025-02-07 Online:2025-10-25 Published:2025-11-05
  • Contact: Jingjing CHEN

摘要:

采用分子动力学法与微观切削实验法对SiC塑性去除机理展开研究。研究发现,切削弹性期的SiC受挤压诱导产生的晶格高畸变效应导致原子矢量位移出现与切削运动方向相反的回流运动趋势,而切削中期弹塑性变形区的原子矢量位移出现涡流运动趋势。研究结果表明,分子动力学模拟的SiC纳米切削已加工表面的塑性变形介导的非晶层覆盖、立方结构向闪锌矿结构的相变转化、剪切带与裂纹形成同实验结果保持一致,已加工表面区的台阶式随机表面粗糙度随着切削温度和速度的增加而增大。切削塑性去除机理为:刀具和工件紧密接触区的高温高应力会诱使剪切带从前刀面流出,形成切削形貌构型。随着切削距离和切削速度的增加,亚表层损伤度逐渐减小,而随着切削温度和深度的增加,亚表层损伤度逐渐增大;随着切削速度的增加,切屑形貌由卷积形态逐渐变成条状形态;随着体系温度的上升,切屑形貌以卷积形态为主。

关键词: 微结构演化, 分子动力学模拟, 塑性去除, 相变转化, 硬脆材料

Abstract:

The plastic removal mechanism of SiC was investigated by molecular dynamics method and micro-cutting experiments. It is found that the high lattice distortion effectiveness of SiC materials induced by extrusion force may lead to the reverse flow trend of the atomic vector displacement in elastic stages during nanoscale cutting, and the eddy current trend of the atomic vector displacement occurs in elastoplasticity deformation stages. The plastic deformation-mediated amorphous layer coverages, the phase transformation from cubic structure to wurtzite structure, and the formation of shear bands and cracks on the machined surfaces of SiC nanocutting obtained from molecular dynamics simulations are consistent with the experimental results.The random surface roughness in machined surface areas is easy to form a stepped type, which increases as cutting temperature and speed increases. The plastic removal mechanism in nanocutting processes is that the high pressure and high temperature induced by loads in closely contact areas between cutting tool and SiC workpiece result in the shear band flow outflow from the rank face and the cutting morphology and configuration are formed finally. The subsurface damage degree gradually decreases with cutting distance and cutting speed increases. Nevertheless, the subsurface damage degree gradually increases with the increase of cutting temperature and depth. Furthermore, with cutting speed increase, chip morphology of SiC materials gradually changed from convolution state to bar state, and the chip morphology is of mainly convolution as the temperature of system increases.

Key words: micro-structural evolution, molecular dynamics simulation, plastic remove, phase transition, hard brittle material

中图分类号: