中国机械工程 ›› 2025, Vol. 36 ›› Issue (10): 2312-2321.DOI: 10.3969/j.issn.1004-132X.2025.10.019
• 机械基础工程 • 上一篇
收稿日期:2025-02-07
出版日期:2025-10-25
发布日期:2025-11-05
通讯作者:
陈晶晶
作者简介:陈晶晶*(通信作者),男,1989年生,校聘副教授。研究方向为机械表/界面摩擦磨损与防护润滑。发表论文30余篇。E-mail:chenjingjingfzu@126.com。基金资助:
Jingjing CHEN(
), Sha CHEN, Haiyan ZHU, Junjun YUAN, Zeyu LUO
Received:2025-02-07
Online:2025-10-25
Published:2025-11-05
Contact:
Jingjing CHEN
摘要:
采用分子动力学法与微观切削实验法对SiC塑性去除机理展开研究。研究发现,切削弹性期的SiC受挤压诱导产生的晶格高畸变效应导致原子矢量位移出现与切削运动方向相反的回流运动趋势,而切削中期弹塑性变形区的原子矢量位移出现涡流运动趋势。研究结果表明,分子动力学模拟的SiC纳米切削已加工表面的塑性变形介导的非晶层覆盖、立方结构向闪锌矿结构的相变转化、剪切带与裂纹形成同实验结果保持一致,已加工表面区的台阶式随机表面粗糙度随着切削温度和速度的增加而增大。切削塑性去除机理为:刀具和工件紧密接触区的高温高应力会诱使剪切带从前刀面流出,形成切削形貌构型。随着切削距离和切削速度的增加,亚表层损伤度逐渐减小,而随着切削温度和深度的增加,亚表层损伤度逐渐增大;随着切削速度的增加,切屑形貌由卷积形态逐渐变成条状形态;随着体系温度的上升,切屑形貌以卷积形态为主。
中图分类号:
陈晶晶, 陈莎, 朱海燕, 袁军军, 罗泽宇. SiC硬脆材料纳米切削的亚表层损伤与塑性去除机理探析[J]. 中国机械工程, 2025, 36(10): 2312-2321.
Jingjing CHEN, Sha CHEN, Haiyan ZHU, Junjun YUAN, Zeyu LUO. Mechanism Analysis of Material Remove and Subsurface Layer Damages for SiC during Nanocutting Processes[J]. China Mechanical Engineering, 2025, 36(10): 2312-2321.
| 模拟条件 | 参数设置 |
|---|---|
| 模型尺寸LX ×LY ×LZ | 5.3 nm×48 nm×23 nm |
| 切削速度v | 50,100,200,250,400 m/s |
| 切削深度d | 2.0,2.6,3.5,4.4 nm |
| 半径R | 2.5 nm |
| 恒温层T | 1,150,300,500,800 K |
| 前角β | 0°,15°,25° |
| 后角α | 0°,15°,25° |
| 时间步长 | 1fs |
表1 SiC纳米切削仿真参数设置
Tab. 1 Simulation parameter setting of SiC material on nano cutting process
| 模拟条件 | 参数设置 |
|---|---|
| 模型尺寸LX ×LY ×LZ | 5.3 nm×48 nm×23 nm |
| 切削速度v | 50,100,200,250,400 m/s |
| 切削深度d | 2.0,2.6,3.5,4.4 nm |
| 半径R | 2.5 nm |
| 恒温层T | 1,150,300,500,800 K |
| 前角β | 0°,15°,25° |
| 后角α | 0°,15°,25° |
| 时间步长 | 1fs |
| [1] | GIORGIS F, GIULIANI F, PIRRI C F, et al. Wide Band Gap a-Si C:H Films for Optoelectronic Applications[J]. Journal of Non-crystalline Solids, 1998, 227(4):465-469. |
| [2] | ZHANG Z, GUO B, WANG F. Evaluation of Switching Loss Contributed by Parasitic Ringing for Fast Switching Wide Band-gap Devices[J]. IEEE Transactions on Power Electronics, 2019, 34(9):9082-9094. |
| [3] | YUN N, LYNCH J, SUNG W. Demonstration and Analysis of a 600 V, 10 A, 4H-SiC Lateral Single RESURF MOSFET for Power ICs Applications[J]. Applied Physics Letters, 2019, 114(19):192104. |
| [4] | DEMENET J L, AMER M, TROMAS C. Dislocations in 4H-and 3C-SiC Single Crystals in the Brittle Regime[J]. Physics Status Solidi C, 2013, 10 (6):64-67. |
| [5] | BAI S, DEVATY R P, CHOYKE W J, et al. Determination of the Electric Field in 4H/3C/4H-SiC Quantum Wells due to Spontaneous Polarization in the 4H SiC Matrix[J]. Applied Physics Letters, 2003, 83(15):3171-3173. |
| [6] | NEUDECK, PHILIP G. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices[J]. Materials Science Forum, 2000, 338(10):1161-1166. |
| [7] | FENG A, MUNIR Z A. The Effect of an Electric Field on Self-sustaining Combustion Synthesis:Part II. Field-assisted Synthesis of μ-SiC[J]. Metallurgical and Materials Transactions B, 1995, 26(3):587-593. |
| [8] | PATRICK L, CHOYKE W J. Static Dielectric Constant of SiC[J]. Physical Review. B, Condensed Matter, 1970, 2(6):2255-2256. |
| [9] | FANG K L, TSUI B Y, YANG C C, et al. Electrical Instability of Low-dielectric Constant Diffusion Barrier Film (a-Si C:H) for Copper Interconnect[J]. IEEE Transactions on Electron Devices, 2001, 48(10):2375-2383. |
| [10] | CHEN M H, DAI H F. Molecular Dynamics Study on Grinding Mechanism of Polycrystalline Silicon Carbide[J]. Diamond and Related Materials, 2022, 130:109541. |
| [11] | QU Z Z, WU W L, DAI H F. Quantitative Analysis of Grinding Performance of Cubic Silicon Carbide Surface Texture Lubricated with Water Film[J]. Tribology International, 2023, 180:108267. |
| [12] | AI T C, LIU J, QIU H J, et al. Removal Behavior and Performance Analysis of Defective Silicon Carbide in Nano-grinding[J]. Precision Engineering, 2021, 72:858-869. |
| [13] | MENG X S, WU W L, LIAO B K, et al. Atomic Simulation of Textured Silicon Carbide Surface Ultra-precision Polishing[J]. Ceramics International, 2022, 48:17034-17045. |
| [14] | TIAN Z, LU J, LUO Q, et al. Chemical Reaction on Silicon Carbide Wafer (0 0 0 1) and (0 0 0 -1) with Water Molecules in Nanoscale Polishing[J]. Applied Surface Science, 2023, 607:155090. |
| [15] | LIU Y, LI B Z, KONG L F. Molecular Dynamics Simulation of Silicon Carbide Nanoscale Material Removal Behaviour[J]. Ceramic International, 2018, 44:11910. |
| [16] | WU Z H, LIU W D, ZHANG L C. Revealing the Deformation Mechanisms of 6H-silicon Carbide under Nano-cutting[J]. Computer Material Science, 2017, 137:282. |
| [17] | XIAO G B, TO S, ZHANG G Q. Molecular Dynamics Modelling of Brittle-ductile Cutting Mode Transition:Case Study on Silicon Carbide[J]. International Journal of Machine Tools & Manufacture, 2015, 88:214-222. |
| [18] | TIAN Z G, XU X P, JIANG F, et.al. Study on Nanomechanical Properties of 4H-SiC and 6H-SiC by Molecular Dynamics Simulations[J]. Ceramic International, 2019, 45:21998-2006. |
| [19] | GOEL S, LUO X C, COMLEY P, et al. Brittle-ductile Transition during Diamond Turning of Single Crystal Silicon Carbide[J]. International Journal of Machine Tools & Manufacture, 2013, 65:15-21. |
| [20] | WANG J S, FANG F Z. Nanometric Cutting Mechanism of Silicon Carbide[J]. CIRP Annals—Manufacturing Technology, 2021, 70:29-32. |
| [21] | 田东禹. 3C-SiC的SEM在线纳米切削机理研究[D]. 天津:天津大学,2020. |
| TIAN Dongyu. Study on the SEM-based Online Nano-cutting Mechanism of 3C-SiC[D]. Tianjin:Tianjin University, 2020. | |
| [22] | PIAO Z, TAO S, XUN S. Atomic-scale Study of Vacancy Defects in SiC Affecting on Removal Mechanisms during Nano-abrasion Process[J].Tribology International, 2020, 145:106136. |
| [23] | AI T C, LIU J, QIU H J, et al. Removal Behavior and Performance Analysis of Defective Silicon Carbide in Nano-grinding[J]. Precision Engineering. 2021,72:858-869. |
| [24] | TIAN Z, CHEN X, XU X P, et al. Molecular Dynamics Simulation of the Material Removal in the Scratching of 4H-SiC and 6H-SiC Substrates[J]. International Journal of Extreme Manufacturing, 2020, 2:045104. |
| [25] | MENG B B, YUAN D D, ZHENG J, et al. Molecular Dynamics Study on Femtosecond Laser Aided Machining of Monocrystalline Silicon Carbide[J]. Material Science Semiconductor Processing, 2019, 101:1-9. |
| [1] | 罗晨阳1, 2, 郭磊1, 2, 曹雏清2, 曹蕾蕾3, 施鹏飞1, 2. 固结与游离磨粒协同作用硬脆材料磨抛加工机理[J]. 中国机械工程, 2025, 36(06): 1159-1169,1177. |
| [2] | 任莹晖, 周家恒, 李伟, 周志雄, 李陈方. 化学机械磨削技术研究现状与展望[J]. 中国机械工程, 2021, 32(18): 2143-2152. |
| [3] | 李庆忠;孙苏磊;李强强. 单晶硅同质互抛实验研究[J]. 中国机械工程, 2019, 30(23): 2773-2777. |
| [4] | 李红1;袁俊丽1;栗卓新1;TILLMANN Wolfgang2;胡安明1,3. 纳米连接过程的分子动力学模拟研究进展[J]. 中国机械工程, 2019, 30(04): 486-493. |
| [5] | 田欣利, 王健全, 唐修检, 张保国, 王朋晓. 基于图像处理的单颗粒金刚石曲率半径测定方法研究[J]. 中国机械工程, 2013, 24(3): 308-312. |
| [6] | 南江红, 刘更, 佟瑞庭, 刘岚. 纳观纹理表面摩擦过程的分子动力学模拟[J]. 中国机械工程, 2012, 23(19): 2378-2383. |
| [7] | 尹韶辉, 曾宪良, 范玉峰, 朱勇建, 唐昆. ELID镜面磨削加工技术研究进展 [J]. 中国机械工程, 2010, 21(06): 750-755. |
| [8] | 阎秋生, 冯建华, 路家斌, 高伟强. 工具电极耐磨性和液体组分对电流变加工的影响[J]. 中国机械工程, 2007, 18(21): 2528-2531. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||