[1]卢守相, 杨秀轩, 张建秋, 等. 关于硬脆材料去除机理与加工损伤的理性思考[J]. 机械工程学报, 2022, 58(15):31-45.
LU Shouxiang, YANG Xiuxuan, ZHANG Jianqiu, et al. Rational Discussion on Material Removal Mechanisms and Machining Damage of Hard and Brittle Materials[J]. Journal of Mechanical Engineering, 2022, 58(15):31-45.
[2]章玉强, 胡中伟, 朱泽朋, 等. 硬脆性材料用柔性磨具研磨的加工表面粗糙度建模[J]. 中国机械工程, 2022, 33(7):834-841.
ZHANG Yuqiang, HU Zhongwei, ZHU Zepeng, et al. Surface Roughness Modeling for Lapping Hard and Brittle Materials by Flexible Abrasive Tools[J]. China Mechanical Engineering, 2022, 33(7):834-841.
[3]GATES J D. Two-body and Three-body Abrasion:a Critical Discussion[J]. Wear, 1998, 214(1):139-146.
[4]石兴泰, 郭磊, 刘晓辉, 等. 随机网格结构固结磨料磨盘平面磨削性能研究[J]. 金刚石与磨料磨具工程, 2022, 42(3):275-282.
SHI Xingtai, GUO Lei, LIU Xiaohui, et al. Study on Machining Performance of Fixed-abrasive Lap-grinding Plate with Random Grid Structure[J]. Diamond & Abrasives Engineering, 2022, 42(3):275-282.
[5]XIAO M, DING Y, FANG Z, et al. Contact Force Modeling and Analysis for Robotic Tilted-disc Polishing of Freeform Workpieces[J]. Precision Engineering, 2020, 66:188-200.
[6]WALKER D D, BROOKS D, KING A, et al. The ‘Precessions’ Tooling for Polishing and Figuring Flat, Spherical and Aspheric Surfaces[J]. Optics Express, 2003, 11(8):958-964.
[7]ZHANG J, SHI Y, LIN X, et al. Five-axis Abrasive Belt Flap Wheel Polishing Method for Leading and Trailing Edges of Aero-engine Blade[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(9/12):3383-3393.
[8]GUO L, DUAN Z, GUO W, et al. Machine Vision-based Recognition of Elastic Abrasive Tool Wear and Its Influence on Machining Performance[J]. Journal of Intelligent Manufacturing, 2024, 35(8):4201-4216.
[9]郭磊, 王家庆, 明子航, 等. 基于弹性基体磨具的3D打印高温合金叶片磨抛试验[J]. 表面技术, 2023, 52(2):43-54.
GUO Lei, WANG Jiaqing, MING Zihang, et al. Grinding and Polishing Test of 3D-printed Superalloy Blade Based on Elastic-matrix Abrasive Tool[J]. Surface Technology, 2023, 52(2):43-54.
[10]ZHU W L, YANG Y, LI H N, et al. Theoretical and Experimental Investigation of Material Removal Mechanism in Compliant Shape Adaptive Grinding Process[J]. International Journal of Machine Tools and Manufacture, 2019, 142:76-97.
[11]VERMA T, CHAWLA O, JHA S. Mathematical Modelling for Prediction of Surface Roughness in Pneumatically Configurable Polishing Process[J]. Wear, 2022, 504/505:204434.
[12]TAO H, LIU Y, ZHAO D, et al. The Material Removal and Surface Generation Mechanism in Ultra-precision Grinding of Silicon Wafers[J]. International Journal of Mechanical Sciences, 2022, 222:107240.
[13]CHEN J, PENG Y. Super Hard and Brittle Material Removal Mechanism in Fixed Abrasive Lapping:Theory and Modeling[J]. Tribology International, 2023, 184:108493.
[14]YAO W, CHU Q, LYU B, et al. Modeling of Material Removal Based on Multi-scale Contact in Cylindrical Polishing[J]. International Journal of Mechanical Sciences, 2022, 223:107287.
[15]TIAN J, LIU H, CHENG J, et al. A Novel Specialized Material Removal Rate Model Considering the Synergistic Effect of Dynamic Pressure and Shear Stress for the Permanent-magnet Small Ball-end Magnetorheological Polishing[J]. Journal of Manufacturing Processes, 2023, 101:1431-1442.
[16]TREZONA R I, ALLSOPP D N, HUTCHINGS I M. Transitions between Two-body and Three-body Abrasive Wear:Influence of Test Conditions in the Microscale Abrasive Wear Test[J]. Wear, 1999, 225/229:205-214.
[17]RAJENDHRAN N, PONDICHERRY K, HUANG S, et al. Influence of Abrasive Characteristics on the Wear Micro-Mechanisms of NbC and WC Cermets during Three-body Abrasion[J]. Wear, 2023, 530/531:205007.
[18]LIU Y, WARKENTIN A, BAUER R, et al. Investigation of Different Grain Shapes and Dressing to Predict Surface Roughness in Grinding Using Kinematic Simulations[J]. Precision Engineering, 2013, 37(3):758-764.
[19]LI B, LI P, ZHOU R, et al. Contact Mechanics in Tribological and Contact Damage-related Problems:a Review[J]. Tribology International, 2022, 171:107534.
[20]LAWN B R. A Model for the Wear of Brittle Solids under Fixed Abrasive Conditions[J]. Wear, 1975, 33(2):369-372.
[21]PAN R, ZHONG B, CHEN D, et al. Modification of Tool Influence Function of Bonnet Polishing Based on Interfacial Friction Coefficient[J]. International Journal of Machine Tools and Manufacture, 2018, 124:43-52.
[22]CHEN S, CHEUNG C F, ZHANG F, et al. Three-dimensional Modelling and Simulation of Vibration Marks on Surface Generation in Ultra-precision Grinding[J]. Precision Engineering, 2018, 53:221-235.
|