中国机械工程 ›› 2025, Vol. 36 ›› Issue (10): 2274-2283.DOI: 10.3969/j.issn.1004-132X.2025.10.014

• 机械基础工程 • 上一篇    

执行器约束下基于轨迹学习的核正则化最优迭代学习控制

杨亮亮(), 陈泓, 鲁文其   

  1. 浙江理工大学机械工程学院, 杭州, 310018
  • 收稿日期:2024-09-25 出版日期:2025-10-25 发布日期:2025-11-05
  • 通讯作者: 杨亮亮
  • 作者简介:杨亮亮*(通信作者),男,1978年生,副教授。研究方向为高速高精运动控制。E-mail:yangliangliang@zstu.edu.cn
  • 基金资助:
    浙江省科技厅重点研发计划(2025C03013);浙江省科技厅重点研发计划(2024C01230);浙江省科技厅重点研发计划(2023C01159);浙江省科技厅重点研发计划(2022C01242);国家自然科学基金(52277068)

Kernel Regularization Optimal Iterative Learning Control Based on Trajectory Learning under Actuator Constraints

Liangliang YANG(), Hong CHEN, Wenqi LU   

  1. School of Mechanical Engineering,Zhejiang Sci-Tech University,Hangzhou,310018
  • Received:2024-09-25 Online:2025-10-25 Published:2025-11-05
  • Contact: Liangliang YANG

摘要:

针对非重复性轨迹跟踪和执行器可能超限的问题,提出了一种基于先前轨迹学习的核正则化最优迭代学习控制算法(KROILC),在迭代过程中利用输入输出的测量值,使用基于核的正则化方法估计系统的脉冲响应,展示了脉冲响应估计领域几种常用核的零均值高斯过程实现,估计得到的脉冲响应被应用于最优迭代学习控制器。通过目标函数加权实现对执行器的约束,迭代过程中参考轨迹变化后的初始前馈力通过轨迹学习得到。在直流无刷电机上的实验验证结果表明,所提出的算法能够在执行器约束下实现非重复性轨迹的全轨迹和稳定段的最优跟踪性能。

关键词: 执行器约束, 数据驱动, 非重复性轨迹, 轨迹学习, 核正则化, 迭代学习控制

Abstract:

To address the issues of non-repetitive trajectories tracking and potential actuator saturation, a kernel regularization optimal iterative learning control (KROILC) algorithm was proposed. The kernel-based regularization method was used to estimate the system's impulse response from input-output data. Several zero-mean Gaussian process kernels were demonstrated for this purpose. The estimated impluse response was applied to the controller, and actuator constraints were weighted in the objective function. Initial feedforward input after trajectory changes was learned iteratively. Experimental results on a brushless DC motor show that the proposed algorithm achieves optimal tracking for non-repetitive trajectories while maintaining actuator stability.

Key words: actuator constraint, data-driven, non-repetitive trajectory, trajectory learning, kernel regularization, iterative learning control

中图分类号: