中国机械工程 ›› 2025, Vol. 36 ›› Issue (06): 1247-1260,1299.DOI: 10.3969/j.issn.1004-132X.2025.06.012

• 智能制造 • 上一篇    下一篇

基于多元动因驱动的中药制药车间动态调度建模与优化

赵培瑞1;邓超1*;朱波1;闫文斌1;梁敏2;谌敏2   

  1. 1.昆明理工大学机电工程学院,昆明,650500
    2.云南白药集团股份有限公司,昆明,650500

  • 出版日期:2025-06-25 发布日期:2025-08-04
  • 作者简介:赵培瑞,男,1999年生,硕士研究生。研究方向为企业集成及信息化工程、智能优化调度、生产及制造系统工程。E-mail:724172613@qq.com。
  • 基金资助:
    云南省科技厅重大科技专项(202302AD080001);云南省基础研究专项(202401AT070374)

Modelling and Optimisation of Dynamic Scheduling in Chinese Materia Medica Pharmaceuticals Workshops Based on Multiple Motivation Drivers

ZHAO Peirui1;DENG Chao1*;ZHU Bo1;YAN Wenbin1;LIANG Min2;CHEN Min2   

  1. 1.School of Mechanical and Electronic Engineering,Kunming University of Science and Technology,
    Kunming,650500
    2.Yunnan Baiyao Group Co.,Ltd.,Kunming,650500

  • Online:2025-06-25 Published:2025-08-04

摘要: 以最小化最大完工时间为优化目标,从原料短缺、临时插单、机器故障等多个动态因素出发构建基于多元动因驱动的中药制药车间动态调度问题(DSP-CMMPW-MDF)模型,并提出一种基于Q-learning的改进人工蜂群(IABC-QL)算法进行求解。在IABC-QL算法中,采用了反向学习策略生成初始种群以确保种群个体的高质量和多样化。为提高算法的深度挖掘能力,设计了融合Q-learning的5种局部搜索操作。在此基础上将上述所提DSP-CMMPW-MDF模型和算法运用于某中药制药颗粒剂生产车间,结果表明,所提模型能够有效提高生产系统在面对不确定性因素时的灵活性和适应性,与现有算法对比结果验证了所提算法的有效性。

关键词: 数据驱动, 中药制药, 车间调度, 动态调度, 人工蜂群算法

Abstract: A dynamic scheduling problem of Chinese materia medica pharmaceutical workshop driven by multiple dynamic factors(DSP-CMMPW-MDF) model was established, the multiple dynamic factors such as raw material shortages, emergency order insertions, and machine breakdowns. An improved artificial bee colony with Q-learning(IABC-QL) algorithm was proposed to solve the DSP-CMMPW-MDF with the optimization objective of minimizing makespan. In the IABC-QL algorithm, an opposition-based learning strategy was proposed to generate the initial population, ensuring high quality and diversity of the population individuals. Five local search operations were designed to enhance the deep exploration capability of the algorithm. Thus the proposed model and algorithm were applied to a Chinese materia medica pharmaceutical granule production workshop. The results show that the proposed model may effectively improve the flexibility and adaptability of the production systems in the face of uncertainties. Additionally, a comparison with existing algorithms validates the effectiveness of the proposed algorithm.

Key words: data-driven, Chinese materia medica pharmaceutical, workshop scheduling, dynamic scheduling, artificial bee colony algorithm

中图分类号: