中国机械工程 ›› 2025, Vol. 36 ›› Issue (10): 2179-2189.DOI: 10.3969/j.issn.1004-132X.2025.10.003
• 国家重点科技项目研究进展专栏 • 上一篇
马天宇1,2(
), 巩固1,2, 曹宏瑞1,2(
), 史江海1,2, 尉询楷3, 章立军4
收稿日期:2024-09-29
出版日期:2025-10-25
发布日期:2025-11-05
通讯作者:
曹宏瑞
作者简介:马天宇,男,1996年生,博士研究生。研究方向为航空发动机轴承微观损伤机理。E-mail:matianyu@stu.xjtu.edu.cn基金资助:
Tianyu MA1,2(
), Gu GONG1,2, Hongrui CAO1,2(
), Jianghai SHI1,2, Xunkai WEI3, Lijun ZHANG4
Received:2024-09-29
Online:2025-10-25
Published:2025-11-05
Contact:
Hongrui CAO
摘要:
为研究8Cr4Mo4V轴承钢中渗碳体对基体力学性能及微裂纹萌生与扩展的影响,采用分子动力学方法系统分析了渗碳体的几何参数(如形状、尺寸、位置)对裂纹萌生和扩展的影响机制,并结合内聚力理论研究了界面裂纹扩展特性。研究结果表明:渗碳体显著提高了bcc-Fe基体的力学性能,渗碳体尺寸越小,它对基体力学性能的增强效果越显著;渗碳体的形状和位置对力学性能影响较小,但尖锐的夹杂加速了裂纹扩展,且夹杂的位置决定了裂纹的扩展路径;在bcc-Fe基体与渗碳体间的界面和错向角较大的孪晶界面,裂纹更难萌生。
中图分类号:
马天宇, 巩固, 曹宏瑞, 史江海, 尉询楷, 章立军. 8Cr4Mo4V轴承钢微观裂纹萌生与扩展机制的分子动力学模拟[J]. 中国机械工程, 2025, 36(10): 2179-2189.
Tianyu MA, Gu GONG, Hongrui CAO, Jianghai SHI, Xunkai WEI, Lijun ZHANG. Molecular Dynamics Simulation of Microscopic Crack Initiation and Extension Mechanism in 8Cr4Mo4V Bearing Steels[J]. China Mechanical Engineering, 2025, 36(10): 2179-2189.
| 弹性常数 | 势函数计算值/GPa | 实验值[ | 相对误差 |
|---|---|---|---|
| C11 | 244.3 | 230.0 | 6.2% |
| C12 | 145.3 | 135.0 | 7.6% |
| C44 | 116.3 | 117.0 |
表1 bcc-Fe弹性常数计算与实验值比较
Tab.1 Comparison of bcc-Fe elastic constant calculation and experimental values
| 弹性常数 | 势函数计算值/GPa | 实验值[ | 相对误差 |
|---|---|---|---|
| C11 | 244.3 | 230.0 | 6.2% |
| C12 | 145.3 | 135.0 | 7.6% |
| C44 | 116.3 | 117.0 |
| 弹性常数 | 势函数计算值/GPa | DFT值[ | 相对误差 |
|---|---|---|---|
| C11 | 383.4 | 388 | |
| C22 | 349.5 | 345 | 1.3% |
| C33 | 304.5 | 322 | |
| C44 | 45.3 | 15 | |
| C55 | 125.8 | 134 | |
| C66 | 118.6 | 134 | |
| C12 | 129.0 | 156 | |
| C13 | 155.1 | 164 | |
| C23 | 156.2 | 162 |
表2 渗碳体弹性常数计算值与DFT值比较
Tab.2 Comparison between calculated elastic constants of cementite and DFT values
| 弹性常数 | 势函数计算值/GPa | DFT值[ | 相对误差 |
|---|---|---|---|
| C11 | 383.4 | 388 | |
| C22 | 349.5 | 345 | 1.3% |
| C33 | 304.5 | 322 | |
| C44 | 45.3 | 15 | |
| C55 | 125.8 | 134 | |
| C66 | 118.6 | 134 | |
| C12 | 129.0 | 156 | |
| C13 | 155.1 | 164 | |
| C23 | 156.2 | 162 |
| 模型 | 损伤应力/ GPa | 损伤位移/ nm | 临界断裂能/ (N·m-1) | 初始损伤刚度/ (N·μm-3) |
|---|---|---|---|---|
| 1 | 10.5986 | 0.134 37 | 5.906 | 78.876 237 26 |
| 2 | 11.0262 | 0.179 930 | 9.914 | 61.280 497 97 |
| 3 | 12.5011 | 0.184 474 | 7.488 | 67.766 189 27 |
表3 3种双晶模型的内聚力参数
Tab.3 Cohesive parameters of three twin crystal models
| 模型 | 损伤应力/ GPa | 损伤位移/ nm | 临界断裂能/ (N·m-1) | 初始损伤刚度/ (N·μm-3) |
|---|---|---|---|---|
| 1 | 10.5986 | 0.134 37 | 5.906 | 78.876 237 26 |
| 2 | 11.0262 | 0.179 930 | 9.914 | 61.280 497 97 |
| 3 | 12.5011 | 0.184 474 | 7.488 | 67.766 189 27 |
晶界错向角 α/(°) | 损伤应力 Tmax/GPa | 临界断裂能 GIC/(N·m-1) |
|---|---|---|
| 10 | 10.3133 | 6.464 |
| 15 | 10.3974 | 9.632 |
| 20 | 9.258 55 | 8.299 |
| 25 | 10.4863 | 9.100 |
| 30 | 10.2065 | 9.384 |
| 35 | 11.0262 | 9.914 |
| 40 | 11.5953 | 10.851 |
表4 不同孪晶晶界错向角模型的内聚区参数
Tab.4 Cohesive parameters of three twin crystal models
晶界错向角 α/(°) | 损伤应力 Tmax/GPa | 临界断裂能 GIC/(N·m-1) |
|---|---|---|
| 10 | 10.3133 | 6.464 |
| 15 | 10.3974 | 9.632 |
| 20 | 9.258 55 | 8.299 |
| 25 | 10.4863 | 9.100 |
| 30 | 10.2065 | 9.384 |
| 35 | 11.0262 | 9.914 |
| 40 | 11.5953 | 10.851 |
| [1] | BHADESHIA H K D H. Steels for Bearings[J]. Progress in Materials Science, 2012, 57 (2):268-435. |
| [2] | PANDKAR A S, ARAKERE N, SUBHASH G. Microstructure-sensitive Accumulation of Plastic Strain due to Ratcheting in Bearing Steels Subject to Rolling Contact Fatigue[J]. International Journal of Fatigue, 2014, 63:191-202. |
| [3] | XU Funing, DING Ning, LI Nan, et al. A Review of Bearing Failure Modes, Mechanisms and Causes [J]. Engineering Failure Analysis, 2023, 152:107518. |
| [4] | YUE Xiong, HU Shan, WANG Xiaokang, et al. Understanding the Nanostructure Evolution and the Mechanical Strengthening of the M50 Bearing Steel during Ultrasonic Shot Peening[J]. Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing, 2022, 836:142721. |
| [5] | 孙玉凤, 刘伟军, 张宏伟, 等. 8Cr4Mo4V钢激光冲击残余应力的演化仿真及其对疲劳性能的影响 [J]. 材料研究学报, 2023, 37 (12):933-942. |
| SUN Yufeng, LIU Weijun, ZHANG Hongwei, et al. Simulation of Residual Stress Evolution of 8Cr4Mo4V Steel Induced by Laser Shock and Its Influence on Faticue Performance [J]. Chinese Journal of Materials Research, 2023, 37 (12):933-942. | |
| [6] | YANG Liqi, XUE Weihai, GAO Siyang, et al. Rolling Contact Fatigue Behavior of M50 Bearing Steel with Rare Earth Addition [J]. International Journal of Fatigue, 2023, 177:107940. |
| [7] | GUO Wei, MA Tianyu, CAO Hongrui, et al. Numerical Analysis of Rolling Contact Fatigue Crack Initiation Considering Material Microstructure [J]. Engineering Failure Analysis, 2022, 138:106394. |
| [8] | LIU Yazhou, LUO Yun, SU Shuo, et al. Molecular Dynamics Simulation of Phase Transition and Crack Propagation in Metastable High Entropy Alloy [J]. Materials Today Communications, 2022, 33:104642. |
| [9] | MOLAEI F. Molecular Dynamics Simulation of Edge Crack Propagation in Single Crystalline Alpha Quartz[J]. Journal of Molecular Graphics & Modelling, 2022, 111:108085. |
| [10] | XING Zheyuan, FAN Haidong, KANG Guozheng. Molecular Dynamics Simulations on the Intergranular Crack Propagation of Magnesium Bicrystals[J]. Computational Materials Science, 2022, 210:111058. |
| [11] | MA Lei, XIAO Shifang, DENG Huiqiu, et al. Molecular Dynamics Simulation of Fatigue Crack Propagation in bcc Iron under Cyclic Loading[J]. International Journal of Fatigue,2014, 68:253-259. |
| [12] | 曹莉霞, 王崇愚. α-Fe裂纹的分子动力学研究[J]. 物理学报, 2007(1):413-422. |
| CAO Lixia, WANG Chongyu. Molecular Dynamics Simulation of Fracture in α-iron[J]. Acta Physica Sinica, 2007 (1):413-422. | |
| [13] | GHAFFARIAN H, TAHERI A K, KANG K, et al. Molecular Dynamics Simulation Study of the Effect of Temperature and Grain Size on the Deformation Behavior of Polycrystalline Cementite[J]. Scripta Materialia, 2015, 95:23-26. |
| [14] | NAKAMURA K, KUMAGAI T, OHNUMA T. Atomistic Simulation of Shear Deformation at bcc-Fe Grain Boundary and Precipitation Strengthening by Cr23C6 [J]. Materials Today Communications, 2022, 33:104711. |
| [15] | PLIMPTON S. Fast Parallel Algorithms for Short-range Molecular-dynamics[J]. Journal of Computational Physics,1995, 117 (1):1-19. |
| [16] | STUKOWSKI A. Visualization and Analysis of Atomistic Simulation Data with Ovito—the open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1):015012. |
| [17] | MENDELEV M I, HAN S, SROLOVITZ D J, et al. Development of New Interatomic Potentials Appropriate for Crystalline and Liquid Iron[J]. Philosophical Magazine,2003, 83 (35):3977-3994. |
| [18] | HENRIKSSON K O E, BJÖRKAS C, NORDLUND K. Atomistic Simulations of Stainless Steels:a Many-body potential for the Fe-Cr-C System[J]. Journal of Physics-condensed Matter, 2013, 25(44):445401. |
| [19] | LEE B J, BASKES M. Second Nearest-neighbor Modified Embedded-atom-method Potential[J]. Physical Review B,2000, 62 (13):8564-8567. |
| [20] | JIANG C, SRINIVASAN S G, CARO A, et al. Structural, Elastic and Electronic Properties of Fe3C from First Principles[J]. Journal of Applied Physics, 2008, 103(4):2127. |
| [21] | ZHU Jiaqi, HE Xiaoqiao, YANG Dong, et al. A Peridynamic Model for Fracture Analysis of Polycrystalline bcc-Fe Associated with Molecular Dynamics Simulation[J]. Theoretical and Applied Fracture Mechanics, 2021, 114:102999. |
| [22] | SHIMOKAWA T, FUJII K, NIIYAMA T. Atomic Simulation Study of the Factors Affecting Nucleation in Deformation-induced Martensitic Transformation in Grains and at Grain Boundaries in Pure Iron[J]. Acta Materialia, 2024:265:119629. |
| [23] | WANG Huiling, WANG Feng, QIAN Dongsheng, et al. Investigation of Damage Mechanisms Related to Microstructural Features of Ferrite-cementite Steels via Experiments and Multiscale Simulations [J]. International Journal of Plasticity, 2023, 170:103745. |
| [1] | 郑江锋1, 2, 3, 张国庆1, 2, 3, 韩俊鸿1, 2, 3, 赖志慧1, 2, 3. 金刚石切削单晶镍纳米表面生成机理研究[J]. 中国机械工程, 2025, 36(05): 963-973. |
| [2] | 孔彦坤1, 邓伟1, 金国忠2, 雷基林1, 陈丽琼3, 贾德文1. 36MnVS4和46MnVS5连杆裂解性能差异性研究及质量缺陷分析[J]. 中国机械工程, 2024, 35(06): 1103-1111,1119. |
| [3] | 郭伟, 曹宏瑞, 訾艳阳, 尉询楷. 滚动轴承接触疲劳裂纹建模与扩展规律研究[J]. 中国机械工程, 2023, 34(16): 1891-1899. |
| [4] | 潘伶, 林国斌, 韩雨晴, 余辉. 分子动力学模拟纳米颗粒添加剂对边界润滑的影响[J]. 中国机械工程, 2023, 34(10): 1140-1156. |
| [5] | 董龙龙, 俞树荣, 李淑欣, 宋伟. 滚动接触下裂纹充液行为研究[J]. 中国机械工程, 2022, 33(10): 1210-1218. |
| [6] | 王德祥, 赵齐亮, 张宇, 高腾, 江京亮, 刘国梁, 李长河, . 离子液体在微量润滑磨削界面的摩擦学机理研究[J]. 中国机械工程, 2022, 33(05): 560-568,606. |
| [7] | 周海, 张杰群, 徐亚萌, 沈军州, 黄梦蝶. 单颗磨粒刻划氧化镓晶体表面的裂纹成核位置及扩展方向研究[J]. 中国机械工程, 2021, 32(16): 1945-1951. |
| [8] | 顾震华, 李可, 顾杰斐, 宿磊, 苏文胜. 基于非线性预测滤波算法的疲劳裂纹扩展预测[J]. 中国机械工程, 2021, 32(14): 1709-1715. |
| [9] | 郝兆朋, 韩雪, 范依航. 碳化硅增韧氧化铝基陶瓷刀具切削Inconel718合金的刀具界面行为研究#br#[J]. 中国机械工程, 2021, 32(09): 1009-1016. |
| [10] | 吴英龙, 宣海军, 单晓明, 付汝龙. 离心轮内部疲劳裂纹扩展及其无损定量表征[J]. 中国机械工程, 2021, 32(06): 658-665. |
| [11] | 李强, 郭辰光, 赵丽娟, 冷岳峰, 岳海涛. 具有晶体学各向异性特征的DD5镍基单晶高温合金铣削力建模[J]. 中国机械工程, 2021, 32(06): 734-740. |
| [12] | 陈景强1;马廉洁1,2;孟博1;周云光2. 氟金云母表面形成机理及表面粗糙度理论模型[J]. 中国机械工程, 2020, 31(24): 2918-2923. |
| [13] | 高红俐;朱楷勇;龚澳;姜伟. 高频谐振疲劳机载荷测量误差建模分析及试验夹具优化设计[J]. 中国机械工程, 2019, 30(22): 2675-2682. |
| [14] | 郑捷1;刘洋1,2;童明波1. 腐蚀环境对飞机梁结构连接件疲劳寿命和裂纹扩展的影响[J]. 中国机械工程, 2019, 30(17): 2129-2134. |
| [15] | 郭帅;赵相吉;何成刚;刘启跃;郭俊;王文健. 水介质下打磨磨痕对钢轨疲劳损伤的影响[J]. 中国机械工程, 2019, 30(08): 889-895. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||