[1]WU Yiwan, DAI Qihang, LIU Hongfei, et al. Ship Base Vibration Reduction Design Technology Based on Visualization of Power Flow and Discrete Optimization[J]. Ocean Engineering, 2024, 309:118494.
[2]衷阳林. 舰船浮筏隔振系统的主动控制研究[D]. 大连:大连理工大学, 2021.
ZHONG Yanglin. Research on Active Control of Ship Floating Raft Isolation System[D]. Dalian:Dalian University of Technology, 2021.
[3]ZHENG Chao, WU Jun, LIU Jianchao, et al. Hysteresis Dynamic Modeling of 4-SPS Parallel All-metallic Isolator with Spherical Joints Considering Nonlinear Micro-collision and Interfacial Friction[J]. Journal of Sound and Vibration, 2025, 596:118778.
[4]苏海洋. 金属橡胶隔振器疲劳特性试验及仿真研究[D]. 哈尔滨:哈尔滨工业大学, 2020.
SU Haiyang. Experiment and Simulation Study on Fatigue Characteristics of Metal Rubber Vibration Isolators[D]. Harbin:Harbin Institute of Technology, 2020.
[5]郭家琪. 金属橡胶减振器非线性力学特性数值模拟研究[D]. 太原:中北大学, 2023.
GUO Jiaqi. Numerical Simulation Study on Nonlinear Mechanical Characteristics of Metal Rubber Damper[D]. Taiyuan:North University of China, 2023.
[6]CAO Xibin, WEI Cheng, LIANG Jiqiu, et al. Design and Dynamic Analysis of Metal Rubber Isolators between Satellite and Carrier Rocket System[J]. Mechanical Sciences, 2019, 10(1):71-78.
[7]邹路明, 郑超, 任子林, 等. 金属橡胶阻尼三向减振器力学特性与环境效应[J]. 机械科学与技术, 2024, 43(8):1323-1332.
ZOU Luming, ZHENG Chao, REN Zilin, et al. Mechanical Characteristics and Environmental Adaptability of a Three-directional Vibration Isolator with Metal-rubber Damper[J]. Mechanical Science and Technology for Aerospace Engineering, 2024, 43(8):1323-1332.
[8]林臻, 李国璋, 白鸿柏, 等. 金属橡胶在模拟海洋环境中的腐蚀行为及阻尼性能[J]. 机械工程材料, 2014, 38(10):69-73.
LIN Zhen, LI Guozhang, BAI Hongbai, et al. Corrosion Behaviour and Damping Characteristics of a Metal Rubber Material in Simulated Marine Environments[J]. Materials for Mechanical Engineering, 2014, 38(10):69-73.
[9]ZHENG Chao, WU Jun, ZHANG Mangong, et al. Impact Response and Energy Absorption of Metallic Buffer with Entangled Wire Mesh Damper[J]. Defence Technology, 2024, 35:137-150.
[10]訾宝, 丁哲宇, 吴乙万, 等. 金属橡胶包覆阻尼结构高温力学建模与试验[J]. 中国机械工程, 2022, 33(11):1294-1301.
ZI Bao, DING Zheyu, WU Yiwan, et al. High Temperature Mechanics Modeling and Experimental Research of Metal Rubber Coated Damping Structure[J]. China Mechanical Engineering, 2022, 33(11):1294-1301.
[11]邹广平, 张冰, 唱忠良, 等. 弹簧-金属丝网橡胶组合减振器迟滞力学模型及实验研究[J]. 力学学报, 2018, 50(5):1125-1134.
ZOU Guangping, ZHANG Bing, CHANG Zhongliang, et al. Hysteresis Mechanical Model and Experimental Study of Spring Metal-net Rubber Combination Damper[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5):1125-1134.
[12]邹广平, 刘泽, 程贺章, 等. 预紧量与振动量级对金属橡胶减振器振动特性影响研究[J]. 振动与冲击, 2015, 34(22):173-177.
ZOU Guangping, LIU Ze, CHENG Hezhang, et al. Effects of Preloading and Vibration Level on the Vibration Characteristics of Metal Rubber Damper[J]. Journal of Vibration and Shock, 2015, 34(22):173-177.
[13]付密果, 刘源, 崔敏亮, 等. 空间飞行器用金属橡胶减振器[J]. 光学 精密工程, 2013, 21(5):1174-1182.
FU Miguo, LIU Yuan, CUI Minliang, et al. Metal-rubber Vibration Absorber for Aerocraft[J]. Optics and Precision Engineering, 2013, 21(5):1174-1182.
[14]姜洪源, 董春芳, 敖宏瑞, 等. 航空发动机用金属橡胶隔振器动静态性能的研究[J]. 航空学报, 2004, 25(2):140-142.
JIANG Hongyuan, DONG Chunfang, AO Hongrui, et al. Research on Dynamic and Static Characteristics of Metal Rubber Isolator Used in Aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(2):140-142.
[15]MARSW V, FATEMI A. A Literature Survey on Fatigue Analysis Approaches for Rubber[J]. International Journal of Fatigue, 2002, 24(9):949-961.
[16]王先彪. 基于性能退化数据的金属橡胶隔振器寿命及可靠性分析[D]. 哈尔滨:哈尔滨工业大学, 2016.
WANG Xianbiao. Research on Life-time and Reliability of Metal Rubber Isolator Based on the Performance Degradation Data[D]. Harbin:Harbin Institute of Technology, 2016.
[17]SHYAM R, AHMAD N, RANGANATH R, et al. Design of a Dynamically Isotropic Stewart-Gough Platform for Passive Micro-Vibration Isolation in Spacecraft Using Optimization[J]. Journal of Spacecraft Technology, 2019, 30(2):1-8.
[18]ABBAS H, HAI Huang. Vibration Isolation Concepts for Non-cubic Stewart Platform Using Modal Control[C]∥Proceedings of 2014 11th International Bhurban Conference on Applied Sciences & Technology(IBCAST). Islamabad, Pakistan:IEEE, 2014:158-162.
[19]顾营迎, 霍琦, 李昂, 等. 用于光学遥感器耐受卫星平台微振动环境地面测试的六自由度平台[J]. 光学 精密工程, 2016, 24(9):2200.
GU Yingying, HUO Qi, LI Ang, et al. Six DOF Platform Applied in Ground Test of Optical Remote Sensor Alleviation Margin in Satellite Micro-vibration Environment[J]. Optics and Precision Engineering, 2016, 24(9):2200.
[20]谢溪凌, 王超新, 陈燕毫, 等. 一种Stewart隔振平台的动力学建模及实验研究[J]. 振动与冲击, 2017, 36(12):201-207.
XIE Xiling, WANG Chaoxin, CHEN Yanhao, et al. Dynamic Modeling and Experiment of a Hybrid Passive/Active Stewart Vibration Isolation Platform[J]. Journal of Vibration and Shock, 2017, 36(12):201-207.
[21]李拓, 白鸿柏, 薛新, 等. 高温环境下编织嵌槽型金属橡胶的疲劳特性分析[J]. 中国机械工程, 2019, 30(9):1009-1017.
LI Tuo, BAI Hongbai, XUE Xin, et al. Fatigue Properties of Knitted-dapped Metal Rubbers under High Temperature Environment[J]. China Mechanical Engineering, 2019, 30(9):1009-1017.
[22]ZHOU Chunhui, REN Zhiying, LIN Youxi, et al. Hysteresis Dynamic Model of Metal Rubber Based on Higher-order Nonlinear Friction(HNF)[J]. Mechanical Systems and Signal Processing, 2023, 189:110117.
[23]程贺章. 金属橡胶的静态特性及其减振机理研究[D].哈尔滨工程大学[D]. 哈尔滨:哈尔滨工业大学, 2015.
CHENG Hezhang. Research on of Static Characteristics and Vibration Isolation Mechanism of Metal Rubber Material[D]. Harbin:Harbin Institute of Technology, 2015.
|