中国机械工程 ›› 2025, Vol. 36 ›› Issue (07): 1416-1422.DOI: 10.3969/j.issn.1004-132X.2025.07.003

• 极端制造基础科学与工程前沿专栏(第二十七届中国科协年会学术论文) • 上一篇    下一篇

304不锈钢极薄带微流道气胀成形材料流动行为及微观组织

张鹏1,3,4,5*;朱学卫2,3,4;于保洋1,3,4;武天枫1,3,4;朱锦州1,3,4   

  1. 1.太原理工大学材料科学与工程学院,太原,030024
    2.太原理工大学机械工程学院,太原,030024
    3.太原理工大学金属成形技术与重型装备全国重点实验室,太原,030024

    4.太原理工大学先进金属复合材料成形技术与装备教育部工程研究中心,太原,030024

    5.海安太原理工大学先进制造与智能装备产业研究院,海安,226601


  • 出版日期:2025-07-25 发布日期:2025-08-26
  • 作者简介:张鹏*,男,1987年生,副教授。研究方向为复合板轧制工艺与设备、轻合金材料旋压工艺、金属塑性变形多尺度数值模拟。发表论文20余篇。E-mail:jluvip@sina.com。
  • 基金资助:
    中央引导地方科技发展资金(YDZJSX2022A023);海安太原理工大学先进制造与智能装备产业研究院开放研发项目(2023HA-TYUTKFYF018);第二十七届中国科协年会学术论文

Flow Behavior and Microstructure of 304 Stainless Steel Ultra-thin Strips in Microchannel Gas Forming

ZHANG Peng1,3,4,5*;ZHU Xuewei2,3,4;YU Baoyang1,3,4;WU Tianfeng1,3,4;ZHU Jinzhou1,3,4   

  1. 1.College of Materials Science and Engineering,Taiyuan University of Technology,Taiyuan,030024
    2.College of Mechanical Engineering,Taiyuan University of Technology,Taiyuan,030024
    3.National Key Laboratory of Metal Forming Technology and Heavy Equipment,Taiyuan University
    of Technology,Taiyuan,030024
    4.Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment,
    Ministry of Education,Taiyuan University of Technology,Taiyuan,030024
    5.Haian Industry Institute of Advanced Manufacturing and Intelligent Equipment,Taiyuan
    University of Technology,Haian,Jiangsu,226601

  • Online:2025-07-25 Published:2025-08-26

摘要: 针对304不锈钢极薄带开展了微流道气胀成形实验及数值模拟,研究了成形过程中坯料应力、应变的分布及不同位置的厚度变化规律,分析了气胀成形试样典型位置微观组织的演变机制。实验与模拟的成形流道轮廓对比验证了数值模拟结果的可靠性。研究结果表明,在25 MPa的成形压力和常温条件下,上圆角处的厚度由100 μm减小至84.05 μm,是成形易破裂区域;模拟流道深度为619.67 μm,实验流道深度为556.34 μm。成形后,试样晶粒减小且位错密度增大,小角度晶界占比由58.04%提升至62.61%,加工硬化现象明显。

关键词: 304不锈钢极薄带, 气胀成形, 微流道, 材料流动行为, 有限元数值模拟

Abstract: Microchannel gas forming experiments and numerical simulations on 304 stainless steel ultra-thin strips were conducted. Stress distribution, strain distribution, and thickness variation patterns at different locations of the blanks in forming processes were investigated. The evolution mechanism of the microstructure at typical positions of the gas formed specimens was analyzed. The comparison between experimental and simulated channel profiles was performed to validate the reliability of the numerical simulation results. The results show that under 25 MPa and room temperature conditions, the thickness at the upper fillet decreases from 100 μm to 84.05 μm, identifying the region is easy to rupture in forming. The simulated channel depth was as 619.67 μm, while the experimental depth was as 556.34 μm. Post-forming analyses reveal that grain size reduces, dislocation density increases, and low-angle grain boundaries raised from 58.04% to 62.61%, which demonstrate the significant work hardening effects.

Key words: 304 stainless steel ultra-thin strip, gas forming, micro-channel, material flow behavior, finite element numerical simulation

中图分类号: