中国机械工程 ›› 2026, Vol. 37 ›› Issue (1): 201-208.DOI: 10.3969/j.issn.1004-132X.2026.01.021
• 智能制造 • 上一篇
收稿日期:2024-04-24
出版日期:2026-01-25
发布日期:2026-02-05
通讯作者:
许四祥
作者简介:任加琪,女,2000年生,硕士研究生。研究方向为机器视觉。E-mail: 1837433005@qq.com基金资助:
REN Jiaqi(
), XU Sixiang(
), DONG Binhui, TANG Ao, SONG Yuchen
Received:2024-04-24
Online:2026-01-25
Published:2026-02-05
Contact:
XU Sixiang
摘要:
针对基于特征点检测的双目视觉测量效率低、神经网络计算复杂度高等问题,提出了基于轻量化高分辨率网络(HRNet)的双目视觉定位与测量方法。轻量化HRNet以HRNet为基准,先替换卷积模块、缩减参数量,再引入Transformer提取全局图像特征,最后使用多级上采样融合策略捕获多尺度特征信息。与原HRNet模型相比,轻量化HRNet模型参数减少95.40%,计算量、归一化平均误差分别减小94.27%和6.25%;三维测量上,轻量化HRNet与双目视觉结合方法的相对误差达到0.256%,能在低算力硬件上实现高精度检测。
中图分类号:
任加琪, 许四祥, 董宾卉, 汤澳, 宋昱宸. 基于轻量化高分辨率网络的双目视觉定位与测量[J]. 中国机械工程, 2026, 37(1): 201-208.
REN Jiaqi, XU Sixiang, DONG Binhui, TANG Ao, SONG Yuchen. Binocular Vision Localization and Measurement Based on Lightweight HRNet[J]. China Mechanical Engineering, 2026, 37(1): 201-208.
| 算法 | U-Net | Transunet | HRNet | 本文算法 |
|---|---|---|---|---|
| Np/106 | 5.70 | 93.20 | 22.65 | 1.04 |
| NF/(109s | 25.73 | 59.01 | 18.34 | 1.05 |
| Emse/mm | 3.56 | 2.15 | 2.08 | 2.01 |
| Enme/% | 0.76 | 0.50 | 0.48 | 0.45 |
| T/ms | 86.21 | 102.21 | 116.27 | 62.50 |
表1 数据集上各算法的性能评价与对比
Tab.1 Performance evaluation and comparison of algorithms on datasets
| 算法 | U-Net | Transunet | HRNet | 本文算法 |
|---|---|---|---|---|
| Np/106 | 5.70 | 93.20 | 22.65 | 1.04 |
| NF/(109s | 25.73 | 59.01 | 18.34 | 1.05 |
| Emse/mm | 3.56 | 2.15 | 2.08 | 2.01 |
| Enme/% | 0.76 | 0.50 | 0.48 | 0.45 |
| T/ms | 86.21 | 102.21 | 116.27 | 62.50 |
编 号 | 边 | 真实尺寸/mm | 测量尺寸/mm | 绝对误差/mm | 相对误差/% | |||
|---|---|---|---|---|---|---|---|---|
| 均值 | 最优值 | 均值 | 最优值 | 均值 | 最优值 | |||
| 1 | 长 | 300.340 | 299.570 | 301.012 | 0.770 | 0.670 | 0.223 | |
| 宽 | 68.300 | 70.161 | 68.181 | 1.861 | 0.120 | 2.725 | ||
| 2 | 长 | 301.900 | 304.095 | 298.969 | 2.195 | 1.929 | 0.727 | |
| 宽 | 31.200 | 33.091 | 31.146 | 1.891 | 0.054 | 6.062 | ||
| 3 | 长 | 204.120 | 204.477 | 203.991 | 0.357 | 0.128 | 0.175 | |
| 宽 | 30.580 | 32.345 | 30.891 | 1.769 | 0.312 | 5.784 | 1.019 | |
| 4 | 长 | 262.680 | 261.626 | 263.008 | 1.054 | 0.328 | 0.125 | |
| 宽 | 100.960 | 100.673 | 101.368 | 0.287 | 0.408 | 0.404 | ||
表2 本文算法长方体连铸坯尺寸测量结果
Tab.2 Measurement results of cuboid continuous casting billet sizes based on the proposed algorithm
编 号 | 边 | 真实尺寸/mm | 测量尺寸/mm | 绝对误差/mm | 相对误差/% | |||
|---|---|---|---|---|---|---|---|---|
| 均值 | 最优值 | 均值 | 最优值 | 均值 | 最优值 | |||
| 1 | 长 | 300.340 | 299.570 | 301.012 | 0.770 | 0.670 | 0.223 | |
| 宽 | 68.300 | 70.161 | 68.181 | 1.861 | 0.120 | 2.725 | ||
| 2 | 长 | 301.900 | 304.095 | 298.969 | 2.195 | 1.929 | 0.727 | |
| 宽 | 31.200 | 33.091 | 31.146 | 1.891 | 0.054 | 6.062 | ||
| 3 | 长 | 204.120 | 204.477 | 203.991 | 0.357 | 0.128 | 0.175 | |
| 宽 | 30.580 | 32.345 | 30.891 | 1.769 | 0.312 | 5.784 | 1.019 | |
| 4 | 长 | 262.680 | 261.626 | 263.008 | 1.054 | 0.328 | 0.125 | |
| 宽 | 100.960 | 100.673 | 101.368 | 0.287 | 0.408 | 0.404 | ||
算法 | 1号连铸坯长边 | 3号连铸坯短边 | 运行时间/s | ||||
|---|---|---|---|---|---|---|---|
测量尺寸/mm | 真实尺寸/mm | 相对误差/% | 测量尺寸/mm | 真实尺寸/mm | 相对误差/% | ||
SIFT | 305.680 | 300.340 | 1.778 | 27.091 | 30.580 | 19.918 | |
ORB | 295.340 | 25.836 | 0.505 | ||||
改进ORB[ | 298.773 | 0.640 | |||||
改进KAZE[ | 301.431 | 0.363 | 28.305 | 7.440 | 3.556 | ||
Transunet*深度学习[ | 299.844 | 32.807 | 7.284 | 0.105 | |||
本文算法 | 301.012 | 32.345 | 5.784 | 0.063 | |||
表3 各算法的测量结果
Tab 3 Measurement results of each algorithm
算法 | 1号连铸坯长边 | 3号连铸坯短边 | 运行时间/s | ||||
|---|---|---|---|---|---|---|---|
测量尺寸/mm | 真实尺寸/mm | 相对误差/% | 测量尺寸/mm | 真实尺寸/mm | 相对误差/% | ||
SIFT | 305.680 | 300.340 | 1.778 | 27.091 | 30.580 | 19.918 | |
ORB | 295.340 | 25.836 | 0.505 | ||||
改进ORB[ | 298.773 | 0.640 | |||||
改进KAZE[ | 301.431 | 0.363 | 28.305 | 7.440 | 3.556 | ||
Transunet*深度学习[ | 299.844 | 32.807 | 7.284 | 0.105 | |||
本文算法 | 301.012 | 32.345 | 5.784 | 0.063 | |||
| 方法 | Np/106 | NF/(109s | T/ms | |
|---|---|---|---|---|
| HRNet | 22.64 | 18.34 | 0.48 | 116.27 |
| HRNet-1 | 12.90 | 12.20 | 0.50 | 80.00 |
| HRNet-2 | 10.08 | 9.93 | 0.52 | 60.61 |
| HRNet-3 | 5.98 | 7.42 | 0.56 | 55.25 |
表4 简化模型结构消融实验结果
Tab.4 Ablation experiment results of simplified model structural
| 方法 | Np/106 | NF/(109s | T/ms | |
|---|---|---|---|---|
| HRNet | 22.64 | 18.34 | 0.48 | 116.27 |
| HRNet-1 | 12.90 | 12.20 | 0.50 | 80.00 |
| HRNet-2 | 10.08 | 9.93 | 0.52 | 60.61 |
| HRNet-3 | 5.98 | 7.42 | 0.56 | 55.25 |
| LT | TF | SC | Np/106 | NF/(109s | |
|---|---|---|---|---|---|
| 5.98 | 7.42 | 0.56 | |||
| √ | 0.67 | 1.78 | 0.62 | ||
| √ | √ | 0.94 | 1.78 | 0.54 | |
| √ | √ | 0.77 | 1.05 | 0.56 | |
| √ | √ | √ | 1.04 | 1.05 | 0.45 |
表5 各模块消融实验结果
Tab.5 Ablation experiment results of each module
| LT | TF | SC | Np/106 | NF/(109s | |
|---|---|---|---|---|---|
| 5.98 | 7.42 | 0.56 | |||
| √ | 0.67 | 1.78 | 0.62 | ||
| √ | √ | 0.94 | 1.78 | 0.54 | |
| √ | √ | 0.77 | 1.05 | 0.56 | |
| √ | √ | √ | 1.04 | 1.05 | 0.45 |
| [1] | 许四祥, 陈富强, 高培青, 等. 一种去除板坯毛刺的系统: CN102935547B[P]. 2014-10-15. |
| Xu Sixiang, Chen Fuqiang, Gao Peiqing, et al. System for Removing Slab Burrs: CN102935547B[P]. 2014-10-15. | |
| [2] | XU Sixiang, DONG Chenchen, ZHOU Shuhua, et al. Binocular Measurement Method for the Continuous Casting Slab Model Based on the Improved BRISK Algorithm[J]. Applied Optics, 2022, 61(11): 3019-3025. |
| [3] | 周书华, 许四祥, 董晨晨, 等. 基于局部信息熵和梯度漂移的双目视觉测量算法[J]. 激光与光电子学进展, 2023, 60(12): 333-341. |
| ZHOU Shuhua, XU Sixiang, DONG Chenchen, et al. Algorithm for Binocular Vision Measurements Based on Local Information Entropy and Gradient Drift[J]. Laser & Optoelectronics Progress, 2023, 60(12): 333-341. | |
| [4] | 宋祥, 许四祥, 杨利法, 等. 基于非线性扩散与高维M-SURF描述符的双目视觉测量方法[J]. 光电子·激光, 2024, 35(4): 405-413. |
| SONG Xiang, XU Sixiang, YANG Lifa, et al. Binocular Vision Measurement Method Based on Nonlinear Diffusion and High-dimensional M-SURF Descriptor[J]. Journal of Optoelectronics·Laser, 2024, 35(4): 405-413. | |
| [5] | 谢阳, 戴逸群, 张超勇, 等. 融合集成模型与深度学习的机床能耗识别与预测方法[J]. 中国机械工程, 2023, 34(24): 2963-2974. |
| XIE Yang, DAI Yiqun, ZHANG Chaoyong, et al. A Method for Identifying and Predicting Energy Consumption of Machine Tools by Combining Integrated Models and Deep Learning[J]. China Mechanical Engineering, 2023, 34(24): 2963-2974. | |
| [6] | BORRA S R, PREMALATHA B, DIVYA G, et al. Deep Hashing with Multilayer CNN-based Biometric Authentication for Identifying Individuals in Transportation Security[J]. Journal of Transportation Security, 2024, 17(1): 4. |
| [7] | MASUDA Y, ISHIKAWA R, TANAKA T, et al. CNN-based Fully Automatic Mitral Valve Extraction Using CT Images and Existence Probability Maps[J]. Physics in Medicine & Biology, 2024, 69(3): 035001. |
| [8] | SHELHAMER E, LONG J, DARRELL T. Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. |
| [9] | RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation[M]∥Medical Image Computing and Computer-assisted Intervention—MICCAI 2015. Cham: Springer International Publishing, 2015: 234-241. |
| [10] | SUN Ke, XIAO Bin, LIU Dong, et al. Deep High-resolution Representation Learning for Human Pose Estimation[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, 2019: 5686-5696. |
| [11] | WANG Jian, LONG Xiang, CHEN Guowei, et al. U-HRnet: Delving into Improving Semantic Representation of High Resolution Network for Dense Prediction[J].arXiv:2210.07140. |
| [12] | HOWARD A G, ZHU Menglong, CHEN Bo, et al. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications[J]. arXiv:1704.04861. |
| [13] | ZHANG Xiangyu, ZHOU Xinyu, LIN Mengxiao, et al. ShuffleNet: an Extremely Efficient Convolutional Neural Network for Mobile Devices[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, 2018: 6848-6856. |
| [14] | 郑云飞, 王晓兵, 张雄伟, 等. 基于金字塔知识的自蒸馏HRNet目标分割方法[J]. 电子学报, 2023, 51(3): 746-756. |
| ZHENG Yunfei, WANG Xiaobing, ZHANG Xiongwei, et al. The Self-distillation HRNet Object Segmentation Based on the Pyramid Knowledge[J]. Acta Electronica Sinica, 2023, 51(3): 746-756. | |
| [15] | VASWANI A, SHAZEER N, PARMAR N,et al. Attention is All You Need[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach,2017:6000-6010. |
| [16] | CHEN Jieneng, LU Yongyi, YU Qihang,et al. TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation[J]. arXiv:. |
| [17] | ZHANG Zhengyou. A Flexible New Technique for Camera Calibration[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334. |
| [18] | LI Jiafeng, WEN Ying, HE Lianghua. SCConv: Spatial and Channel Reconstruction Convolution for Feature Redundancy[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Vancouver, 2023: 6153-6162. |
| [19] | 李同谱, 许四祥, 施宇翔, 等. 基于双目视觉与Transformer的连铸坯模型定位与测量[J]. 中南大学学报(自然科学版), 2024, 55(4): 1312-1322. |
| LI Tongpu, XU Sixiang, SHI Yuxiang, et al. Continuous Casting Slab Model Positioning and Measurement Based on Binocular Vision and Transformer[J]. Journal of Central South University (Science and Technology), 2024, 55(4): 1312-1322. |
| [1] | 吴洪臣, 陈晓荣, 李柏杨. 多线程半全局立体匹配工件内部检测方法[J]. 中国机械工程, 2025, 36(11): 2783-2791. |
| [2] | 时培成1, 单子贤1, 朱海龙1, 海滨2, 王磊2, 陆发燕2. 新能源汽车动力电池系统的集成化设计技术[J]. 中国机械工程, 2025, 36(07): 1611-1623. |
| [3] | 赵苍鹏, 代亮成, 池茂儒, 郭兆团, 曾鹏程, 孙宝恺. 多功能车体间外风挡在高速动车组上的适用性研究[J]. 中国机械工程, 2025, 36(05): 1111-1122. |
| [4] | 李鹏1, 2, 3, 4, 李梦聪1, 4, 肖立波2, 3, 王一棠1, 4, 宋学官1, 4, 阳领5. 基于多保真度代理模型的混凝土泵车臂架销轴轻量化设计[J]. 中国机械工程, 2025, 36(04): 821-829. |
| [5] | 苏永雷, 张志飞. 车身多性能约束下的一体压铸三角梁轻量化设计[J]. 中国机械工程, 2024, 35(04): 691-699. |
| [6] | 王超, 成艾国, 张承霖, 于万元, 何智成. 面向刮底安全的电池包防护结构轻量化设计[J]. 中国机械工程, 2023, 34(19): 2343-2352. |
| [7] | 刘英杰, 胡强, 赵新明, 张少明, 黄帅, 王永慧. 汽车发动机连接支架拓扑优化及增材制造研究[J]. 中国机械工程, 2023, 34(18): 2238-2267. |
| [8] | 曹腾, 李晓牛, 王柏权, 温智益, 吴大伟. 单相压电电机驱动的高精度孔径光阑设计[J]. 中国机械工程, 2022, 33(20): 2414-2419. |
| [9] | 王登峰, 李慎华. 基于Pareto挖掘的白车身侧碰安全件轻量化优化设计[J]. 中国机械工程, 2021, 32(13): 1584-1590,1637. |
| [10] | 张凯成;李舜酩;孙明杰. 钢铝材料结合的商用车车架多工况轻量化优化设计[J]. 中国机械工程, 2020, 31(18): 2206-2211,2219. |
| [11] | 童水光1;何顺1;童哲铭1;范慧楚1;李元松2;李明辉2;谭达辉3;钟玉伟3. 基于组合近似模型的轻量化设计方法[J]. 中国机械工程, 2020, 31(11): 1337-1343. |
| [12] | 朱传敏1;顾鹏1;刘丁豪1;张恒2. 包含颈缩失稳的中厚钢板应力应变关系[J]. 中国机械工程, 2020, 31(09): 1037-1042. |
| [13] | 钟浩龙;张小龙;刘子建. 薄壁梁结构的电动汽车车身刚度正向设计方法[J]. 中国机械工程, 2020, 31(08): 975-982. |
| [14] | 李鹏1,2;乔凤斌2;王飞2;丘廉芳2;王江2;赵维刚2. 异种高性能热塑性材料旋转摩擦铆接工艺研究[J]. 中国机械工程, 2019, 30(19): 2372-2377. |
| [15] | 宇文旋1;赵明明2;陈龙2 . 无人车鱼眼双目深度提取研究[J]. 中国机械工程, 2019, 30(13): 1577-1584. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||