[1]周振平, 孙武和. 混凝土机械构造与使用维护[M]. 北京:化学工业出版社,2014.
ZHOU Zhenping, SUN Wuhe. Construction and Maintenance of Concrete Machinery[M]. Beijing:Chemical Industry Press, 2014.
[2]李鹏,王一棠,王佳茜,等.数据驱动的混凝土泵车臂架疲劳载荷谱编制[J]. 中国机械工程, 2024, 35(10):1881-1889.
LI Peng, WANG Yitang, WANG Jiaxi, et al. Compilation of Data-driven Fatigue Load Spectrum for Concrete Pump Truck Boom[J]. China Mechanical Engineering, 2024, 35(10):1881-1889.
[3]黄大为,田相玉,孙国香.空心销轴的制备、计算及试验[J].建设机械技术与管理,2016,29(5):60-65.
HUANG Dawei, TIAN Xiangyu, SUN Guoxiang. Preparation, Calculation, and Testing of Hollow Pins[J]. Construction Machinery Technology and Management, 2016,29(5):60-65.
[4]朱奇,张鑫,黄宇华.长臂架泵车空心销轴装配工装设计与应用[J].建筑机械化,2021,42(9):66-67.
ZHU Qi, ZHANG Xin, HUANG Yuhua. Design and Application of Assembly Fixture for Hollow Pin Shafts of Long Arm Pump Trucks[J]. Construction Mechanization, 2021, 42(9):66-67.
[5]朱奇,何科英,蒋廉健.高端工程机械大长径比重型空心销轴拆拔工装设计[J].建筑机械,2021(9):91-93.
ZHU Qi, HE Keying, JIANG Lianjian. Design of Dismantling and Drawing Fixtures for Heavy-duty Hollow Pin Shafts with Large Aspect Ratios in High-end Construction Machinery[J]. Construction Machinery, 2021(9):91-93.
[6]李政茂. 商用车驾驶室骨架轻量化设计与研究[D].长春:吉林大学 2010.
LI Zhengmao. Lightweight Design and Research of Commercial Vehicle Driver's Cabin Skeleton[D]. Changchun:Jilin University, 2010.
[7]李龙.车身梁截面优化方法的研究[D].长春:吉林大学,2008.
LI Long. Research on Optimization Method of Vehicle Beam Section[D]. Changchun:Jilin University, 2008.
[8]何西旺,杨亮亮,冉仁杰,等.基于多评价标准的代理模型综合比较研究[J].机械工程学报,2022,58(16):403-419.
HE Xiwang, YANG Liangliang, RAN Renjie, et al. A Comprehensive Comparative Study of Proxy Models Based on Multiple Evaluation Criteria[J]. Journal of Mechanical Engineering, 2022, 58(16):403-419.
[9]张伟,宋学官,石茂林,等.基于代理模型的机械式挖掘机动臂轻量化设计[J].机械设计与制造,2019(4):1-4.
ZHANG Wei, SONG Xueguan, SHI Maolin,et al. Lightweight Design of Mechanical Excavator Arm Based on Agent Model[J]. Mechanical Design and Manufacturing, 2019(4):1-4.
[10]LIU B, KOZIEL S, ZHANG Q. A Multi-fidelity Surrogate-model-assisted Evolutionary Algorithm for Computationally Expensive Optimization Problems[J]. Journal of Computational Science, 2016, 12:28-37.
[11]TAO J, SUN G. Application of Deep Learning Based Multi-fidelity Surrogate Model to Robust Aerodynamic Design Optimization[J]. Aerospace Science and Technology, 2019, 92:722-737.
[12]CHAKRABORTY S, CHATTERJEE T, CHOWDHURY R, et al. A Surrogate Based Multi-fidelity Approach for Robust Design Optimization[J]. Applied Mathematical Modelling, 2017, 47:726-744.
[13]PAPILA M, HAFTKA R T.Response Surface Approximations:Noise, Error Repair, and Modeling Errors[J]. AIAA Journal, 2000, 38(12):2336-2343.
[14]ZHANG Y, KIM N H, PARK C, et al. Multifidelity Surrogate Based on Single Linear Regression[J]. AIAA Journal, 2018, 56(12):4944-4952.
[15]SONG X, LYU L, SUN W, et al. A Radial Basis Function-based Multi-fidelity Surrogate Model:Exploring Correlation between High-fidelity and Low-fidelity Models[J]. Structural and Multidisciplinary Optimization, 2019, 60(3):965-981.
[16]PETERSEN K B, PEDERSEN M S. The Matrix Cookbook[J]. Technical University of Denmark, 2008, 7(15):510.
[17]WANG Y, LI K, LI Q, et al. Multi-fidelity Information Fusion with Hierarchical Surrogate Guided by Feature Mapping[J]. Knowledge-based Systems, 2023, 275:110693.
|