[1]昝晓东, 李孝滔, 邢帅兵, 等. 疲劳裂纹扩展引起的钢轨表面剥离研究[J]. 铁道科学与工程学报, 2018, 15(12):3082-3088.
ZAN Xiaodong, LI Xiaotao, XING Shuaibing, et al. Analysis of Rail Surface Shelling Resulting from Fatigue Crack Propagation[J]. Journal of Railway Science and Engineering, 2018, 15(12):3082-3088.
[2]POPOVIC' Z, LAZAREVIC' L, BRAJOVIC'ET L, et al. The Importance of Rail Inspections in the Urban Area-aspect of Head Checking Rail Defects[J]. Procedia Engineering, 2015, 117:596-608.
[3]POPOVIC' Z, LAZAREVIC' L, BRAJOVIC'ET L, et al. Managing Rail Service Life[J]. Metalurgija, 2014, 53:721-724.
[4]ZHOU Yu, HAN Yanbin, MU Dongsheng, et al. Prediction of the Coexistence of Rail Head Check Initiation and Wear Growth[J]. International Journal of Fatigue, 2018, 112:289-300.
[5]周宇, 王钲, 卢哲超, 等. 液体对钢轨滚动接触疲劳裂纹的作用[J]. 同济大学学报(自然科学版), 2022, 50(2):253-263.
ZHOU Yu, WANG Zheng, LU Zhechao, et al. Effectof Liquid on Rolling Contact Fatigue Cracks in Rail[J]. Journal of Tongji University(Natural Science), 2022, 50(2):253-263.
[6]周宇, 木东升, 韩延彬, 等. 基于X射线断层扫描的钢轨滚动接触疲劳裂纹形状建模方法[J]. 华东交通大学学报, 2019, 36(1):41-48.
ZHOU Yu, MU Dongsheng, HAN Yanbin, et al. Modeling Method for Rolling Contact Fatigue Crack Shape of Rail Based on X-ray Tomography[J]. Journal of East China Jiaotong University, 2019, 36(1):41-48.
[7]JIANG Yi, WANG Haitao, CHEN Shuai. Visual Quantitative Detection of Rail Surface Crack Based on Laser Ultrasonic Technology[J]. Optik, 2021, 237:166732.
[8]陈潇. 钢轨漏磁检测仿真分析及试验研究[J]. 机械与电子, 2020, 38(1):57-61.
CHEN Xiao. Simulation Analysis and Experimental Study on Magnetic Flux Leakage Detection of Rail[J]. Machinery & Electronics, 2020, 38(1):57-61.
[9]许鹏, 刘柏霖, 陈亚雄. 基于差分柔性涡流探头的铁轨裂纹检测方法[J]. 中国机械工程, 2023, 34(20):2419-2427.
XU Peng, LIU Bailin, CHEN Yaxiong. Rail Crack Detection Method Based on Differential Flexible Eddy Current Probe[J]. China Mechanical Engineering, 2023, 34(20):2419-2427.
[10]闫梁,万本例,胡斌,等.不锈钢表面裂纹方向电磁检测方法[J].中国机械工程, 2022, 33(9):1057-1064.
YAN Liang, WAN Benli, HU Bin, et al.Surface Crack Orientation Detection Method of Stainless Steels Based on Electromagnetic Field[J]. China Mechanical Engineering, 2022, 33(9):1057-1064.
[11]NICHOLSON G L, ROWSHANDEL H, HAO X, et al. Measurement and Modelling of ACFM Response to Multiple RCF Cracks in Rail and Wheels[J]. Ironmaking & Steelmaking, 2013, 40(2):87-91.
[12]YUAN X, LI W, CHEN G, et al. Two-step Interpolation Algorithm for Measurement of Longitudinal Cracks on Pipe Strings Using Circumferential Current Field Testing System[J]. IEEE Transactions on Industrial Informatics, 2017, 14(2):394-402.
[13]GE J, LI W, CHEN G, et al. Experimental and Numerical Investigation on Buckling and Post-buckling of a 3000 m Subsea Separator[J]. Engineering Failure Analysis, 2017, 74(2):107-118.
[14]LEWIS A M, MICHAEL D H, LUGG M C, et al. Thin-skin Electromagnetic Fields around Surface Breaking Cracks in Metals[J]. Journal of Applied Physics, 1988, 64(8):3777-3784.
[15]SAGUY H, RITTEL D. Bridging Thin and Thick Skin Solutions for Alternating Currents in Cracked Conductors[J]. Applied Physics Letters, 2005, 87(8):084103.
[16]NICHOLSON G, KOSTRYZHEV A, HAO X. Modelling and Experimental Measurements of Idealized and Light-moderate RCF Cracks in Rails Using an ACFM Sensor[J]. NDT&E International, 2011, 44:427-437.
[17]SHEN J, LIU M, DONG C, et al. Analysis on Asymmetrical RCF Cracks Characterisation Using an ACFM Sensor and the Influence of the Rail Head Profile[J]. Measurement, 2022, 194(12):111008.
[18]SHEN J, ZHOU L, ROWSHANDEL H, et al. Determining the Propagation Angle for Non-vertical Surface-breaking Cracks and Its Effect on Crack Sizing Using an ACFM Sensor[J]. Measurement Science and Technology, 2015, 26(11):115604.
[19]MARQUARDT D W. An Algorithm for Least-squares Estimation of Nonlinear Parameters[J]. Journal of the Society for Industrial and Applied Mathematics, 1963, 11(2):431-441.
|