中国机械工程 ›› 2026, Vol. 37 ›› Issue (1): 162-173.DOI: 10.3969/j.issn.1004-132X.2026.01.017
• 机械基础工程 • 上一篇
乔冠1,2(
), 陈佳琪1, 唐术锋1,2(
), 刘国强3, 刘更4
收稿日期:2024-10-28
修回日期:2025-11-18
出版日期:2026-01-25
发布日期:2026-02-05
通讯作者:
唐术锋
作者简介:乔冠,男,1990年生,副教授,硕士研究生导师。研究方向为行星滚柱丝杠副传动、人形机器人一体化关节。发表论文20余篇。E-mail: qiaoguan@imut.edu.cn基金资助:
QIAO Guan1,2(
), CHEN Jiaqi1, TANG Shufeng1,2(
), LIU Guoqiang3, LIU Geng4
Received:2024-10-28
Revised:2025-11-18
Online:2026-01-25
Published:2026-02-05
Contact:
TANG Shufeng
摘要:
行星滚柱丝杠副在长时间高速重载的工况下会堆积大量热量,使系统内部温度升高,产生热变形,导致其润滑性能变差甚至机构失效。通过行星滚柱丝杠副的结构特点揭示其热特性机理,从热源分析、热特性分析方法、温升与热力耦合、热变形、热误差及其优化等方面分析总结其热特性研究进展。在此基础上,探讨并展望了行星滚柱丝杠副热特性的研究趋势。
中图分类号:
乔冠, 陈佳琪, 唐术锋, 刘国强, 刘更. 行星滚柱丝杠副热特性研究现状[J]. 中国机械工程, 2026, 37(1): 162-173.
QIAO Guan, CHEN Jiaqi, TANG Shufeng, LIU Guoqiang, LIU Geng. A Review of Thermal Characteristics for Planetary Roller Screw Mechanisms[J]. China Mechanical Engineering, 2026, 37(1): 162-173.
| 文献 | 方法 | 优点 |
|---|---|---|
| 文献[ | 计算机辅助分析 | 基于接触分析得出最优的齿形修形方案 |
| 文献[ | 渗碳-啮合耦合热处理优化方法 | 考虑耦合效应,提高齿轮齿面的接触和物理性能 |
| 文献[ | 采用单因素实验与正交试验相结合的方法构建BP神经网络模型,通过PSO算法优化模型参数 | 通过热处理优化关键工艺参数,可为齿轮减齿工艺中的变形控制与加工精度提高提供参考 |
| 文献[ | 微分运动与多体系统理论的大规格数控滚齿机多源误差建模方法 | 可用于不同结构的机床综合误差建模 |
| 文献[ | 通过正交试验优化纳米涂层配比 | 优化BSM涂层的材料配比、喷嘴流量,有效降低系统温升、抑制热变形 |
| 文献[ | Tent混沌改进松鼠搜索算法 | 提高热误差预测精度及BP神经网络算法的预测精度 |
| 文献[ | 利用WNN构建BSM热变形与热源温度网络模型,PSO确定BSM最优的热源分布 | 明确BSM热源与热变形关系,优化冷却方案 |
| 文献[ | HRS的多目标、多参数优化模型,MOGA优化热边界条件 | 可在设计阶段获取BSM进给传动系统在不同工况下的热特性,避免重复实验 |
表1 齿轮与BSM热误差优化
Table 1 Thermal error optimization of gear and BSM
| 文献 | 方法 | 优点 |
|---|---|---|
| 文献[ | 计算机辅助分析 | 基于接触分析得出最优的齿形修形方案 |
| 文献[ | 渗碳-啮合耦合热处理优化方法 | 考虑耦合效应,提高齿轮齿面的接触和物理性能 |
| 文献[ | 采用单因素实验与正交试验相结合的方法构建BP神经网络模型,通过PSO算法优化模型参数 | 通过热处理优化关键工艺参数,可为齿轮减齿工艺中的变形控制与加工精度提高提供参考 |
| 文献[ | 微分运动与多体系统理论的大规格数控滚齿机多源误差建模方法 | 可用于不同结构的机床综合误差建模 |
| 文献[ | 通过正交试验优化纳米涂层配比 | 优化BSM涂层的材料配比、喷嘴流量,有效降低系统温升、抑制热变形 |
| 文献[ | Tent混沌改进松鼠搜索算法 | 提高热误差预测精度及BP神经网络算法的预测精度 |
| 文献[ | 利用WNN构建BSM热变形与热源温度网络模型,PSO确定BSM最优的热源分布 | 明确BSM热源与热变形关系,优化冷却方案 |
| 文献[ | HRS的多目标、多参数优化模型,MOGA优化热边界条件 | 可在设计阶段获取BSM进给传动系统在不同工况下的热特性,避免重复实验 |
| [1] | HU Rui, WEI Peitang, DU Xuesong, et al. Multi-objective Optimization and Accelerated Experimental Research on Load Distribution of Planetary Roller Screw Mechanism[J]. Tribology International, 2024, 199: 110046. |
| [2] | 吴翰林, 魏沛堂, 蔡磊, 等. 基于加工误差敏感度与模糊层次分析法的行星滚柱丝杠公差匹配优化方法[J]. 中国机械工程, 2022, 33(22): 2693-2703. |
| WU Hanlin, WEI Peitang, CAI Lei, et al. Optimization of Planetary Roller Screw Tolerance Matching Based on Machining Error Sensitivity Analysis and Fuzzy Analytic Hierarchy Processes[J]. China Mechanical Engineering, 2022, 33(22): 2693-2703. | |
| [3] | ARRIOLA D, THIELECKE F. Model-based Design and Experimental Verification of a Monitoring Concept for an Active-active Electromechanical Aileron Actuation System[J]. Mechanical Systems and Signal Processing, 2017, 94: 322-345. |
| [4] | QIAO Guan, LIU Geng, SHI Zhenghong, et al. A Review of Electromechanical Actuators for More/all Electric Aircraft Systems[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(22): 4128-4151. |
| [5] | XING Mingcai, ZHANG Bohong, DENG Pan, et al. A Novel Wear Prediction Model for Planetary Roller Screw Based on Universal Sliding Distance Model[J]. Tribology International, 2022, 175: 107851. |
| [6] | 付晓军, 刘更, 马尚君. 行星滚柱丝杠副啮合与运动特性的理论及试验研究[J]. 机械工程学报, 2020, 56(5): 92. |
| FU Xiaojun, LIU Geng, MA Shangjun. Theoretical and Experimental Study on Meshing and Motion Characteristics of Planetary Roller Screw Pair[J]. Journal of Mechanical Engineering, 2020, 56(5): 92. | |
| [7] | CAI Wei, FU Xiaojun, MA Shangjun, et al. Meshing Characteristics Analysis of Planetary Roller Screw Mechanism with Misalignment[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2024, 238(9): 3794-3806.. |
| [8] | YAO Qin, ZHANG Mengchuang, LIU Yongshou, et al. Multi-objective Optimization of Planetary Roller Screw Mechanism Based on Improved Mathematical Modelling[J]. Tribology International, 2021, 161: 107095.. |
| [9] | YAO Qin, ZHANG Mengchuang, MA Shangjun. Structural Design for Planetary Roller Screw Mechanism Based on the Developed Contact Modelling[J]. Tribology International, 2022, 171: 107570.. |
| [10] | HE Huilin, WEI Peitang, LIU Huaiju, et al. Three-dimensional Parametric Contact Analysis of Planetary Roller Screw Mechanism and Its Application in Grouping for Selective Assembly[J]. Frontiers of Mechanical Engineering, 2024, 19(1): 2. |
| [11] | 李路路, 王海伟, 刘更, 等. 新型行星滚柱滚轮复合传动装置原理及运动学分析[J]. 机械传动, 2022, 46(5): 53-61. |
| LI Lulu, WANG Haiwei, LIU Geng, et al. Principle and Kinematics Analysis of a New Planetary Roller and Roller Pinion Compound Transmission Device[J]. Journal of Mechanical Transmission, 2022, 46(5): 53-61. | |
| [12] | XING Mingcai, ZHANG Bohong, DENG Pan, et al. A Comprehensive Analysis of Contact Kinematics for Planetary Roller Screw Mechanism[J]. Tribology International, 2023, 179: 108127. |
| [13] | WANG Chang, ZHANG Caixia, CHENG Qiang, et al. Kinematic Modeling of a Planetary Roller Screw Mechanism Considering Runout Errors and Elastic Deformation[J]. The International Journal of Advanced Manufacturing Technology, 2023, 124(11): 4455-4463. |
| [14] | MA Shangjun, WU Linping, FU Xiaojun, et al. Modelling of Static Contact with Friction of Threaded Surfaces in a Planetary Roller Screw Mechanism[J]. Mechanism and Machine Theory, 2019, 139: 212-236. |
| [15] | MA Shangjun, WU Linping, LIU Geng, et al. Local Contact Characteristics of Threaded Surfaces in a Planetary Roller Screw Mechanism[J]. Mechanics Based Design of Structures and Machines, 2020, 48(1): 1-26. |
| [16] | HU Rui, WEI Peitang, DU Xuesong, et al. Investigation of Loaded Contact Characteristics of Planetary Roller Screw Mechanism Based on Influence Coefficient Method and Machine Learning[J]. Advanced Engineering Informatics, 2023, 58: 102146. |
| [17] | XING Mingcai, LIU Shuo, CUI Yi, et al. A Comprehensive Sliding Wear Prediction Method for Planetary Roller Screw Mechanism[J]. Wear, 2024, 558: 205536. |
| [18] | XIE Zhijie, WANG Yu, NI Jianan, et al. Friction Torque Analysis of Planetary Roller Screw Based on the Creepage Theory[J]. Tribology International, 2023, 178: 108059. |
| [19] | 解志杰, 张传伟, 薛其河, 等. 行星滚柱丝杠动态摩擦力矩和传动效率分析[J]. 摩擦学学报, 2019, 39(4): 489-496. |
| XIE Zhijie, ZHANG Chuanwei, XUE Qihe, et al. Analysis of Dynamic Friction Torque and Transmission Efficiency of Planetary Roller Screw[J]. Tribology, 2019, 39(4): 489-496. | |
| [20] | 刘柱, 范元勋. 行星滚柱丝杠传动效率试验台设计[J]. 组合机床与自动化加工技术, 2019(12): 108-110. |
| LIU Zhu, FAN Yuanxun. Experimental Study on Efficiency Measurement of Planetary Roller Screw[J]. Modular Machine Tool & Automatic Technique, 2019(12): 108-110. | |
| [21] | 江俊麟, 夏鲲, 张文君. 行星滚柱丝杠1000 N·m传动效率试验台测量控制系统设计[J]. 农业装备与车辆工程, 2023, 61(5): 52-57. |
| JIANG Junlin, XIA Kun, ZHANG Wenjun. Design of Measurement and Control System for 1000 N·m Transmission Efficiency Test-bed of Planetary Roller Lead Screw[J]. Agricultural Equipment & Vehicle Engineering, 2023, 61(5): 52-57. | |
| [22] | QIAO Guan, LIAO Rong, GUO Shijie, et al. Design and Dynamic Analysis of the Recirculating Planetary Roller Screw Mechanism[J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 87. |
| [23] | FU Xiaojun, LIU Geng, MA Shangjun, et al. An Efficient Method for the Dynamic Analysis of Planetary Roller Screw Mechanism[J]. Mechanism and Machine Theory, 2020, 150: 103851. |
| [24] | HU Rui, WEI Peitang, LIU Huaiju, et al. Investigation on Load Distribution among Rollers of Planetary Roller Screw Mechanism Considering Machining Errors: Analytical Calculation and Machine Learning Approach[J]. Mechanism and Machine Theory, 2023, 185: 105322. |
| [25] | HU Rui, WEI Peitang, ZHOU Pengliang, et al. A Roller Taper Modification Method for Load Distribution Optimization of Planetary Roller Screw Mechanism[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2022, 16(3): JAMDSM0032. |
| [26] | 杨家军, 施建华, 朱继生, 等. 行星滚柱丝杠副热特性与热变形抑制研究[J]. 湖北工业大学学报, 2014(4): 1-4. |
| YANG Jiajun, SHI Jianhua, ZHU Jisheng, et al. Analysis of Thermal Characteristics and Thermal Deformation Control of the Planetary Roller Screw[J]. Journal of Hubei University of Technology, 2014(4): 1-4. | |
| [27] | 刘淑敏, 刘更, 马尚君, 等. 不同工作温度下行星滚柱丝杠副载荷分布研究[J]. 机械传动, 2016, 40(5): 14-19. |
| LIU Shumin, LIU Geng, MA Shangjun, et al. Research of the Load Distribution of Planetary Roller Screw Mechanism under Different Working Temperatures[J]. Journal of Mechanical Transmission, 2016, 40(5): 14-19. | |
| [28] | 施建华. 行星滚柱丝杠副热特性与发尘特性研究[D]. 武汉:华中科技大学, 2017. |
| SHI Jianhua. Research of Thermal and Particle Generation Characteristics for Planetary Roller Screw[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
| [29] | MA Shangjun, LIU Geng, TONG Ruiting, et al. A Frictional Heat Model of Planetary Roller Screw Mechanism Considering Load Distribution[J]. Mechanics Based Design of Structures and Machines, 2015, 43(2): 164-182. |
| [30] | MIAO Jiacheng, WANG Shuyan, SHAN Xinping, et al. Investigation on Contact Behavior of Planetary Roller Screw Mechanism Considering Thermal Deformation[J]. Transactions of the Canadian Society for Mechanical Engineering, 2023, 47(1): 89-111. |
| [31] | 商鹏, 高长建, 韩忠建, 等. 精密滚珠丝杠螺母副热平衡-温升特性仿真研究[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(7): 725-732. |
| SHANG Peng, GAO Changjian, HAN Zhongjian, et al. Simulation Study on Thermal Balance-Temperature Rise Characteristics of a Precision Ball Screw-Nut Pair[J]. Journal of Tianjin University(Science and Technology), 2019, 52(7): 725-732. | |
| [32] | QIU Yalan, ZHOU Changguang, YiOU, et al. Theoretical and Experimental Analysis of the Temperature Rise of a Ball Screw[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(1): 703-715. |
| [33] | SONG Lei, LIU Kuo, LIU Hongqiang, et al. Frictional Heating Effect of Ball Screw Pairs for Machine Tools: a New Calculation Method[J]. Tribology International, 2024, 194: 109459. |
| [34] | SHENG Xin, LIU An, GAO Chen, et al. Radial Temperature Gradient Investigation of the Large-diameter Ball Screw Based on Mathematical Modelling[J]. International Communications in Heat and Mass Transfer, 2024, 153: 107367. |
| [35] | WU Huayang, LI Jiejing, LIU Haixu, et al. An Analysis of Heat Source Contribution and Design of Optimal Cooling Method for Ball Screw Feed System[J]. International Journal of Computer Integrated Manufacturing, 2025, 38(2): 200-215. |
| [36] | 陈婉, 王科社, 宋杰, 等. 高性能滚珠丝杠副有限元热分析[J]. 新型工业化, 2016, 6(11): 58-63. |
| CHEN Wan, WANG Keshe, SONG Jie, et al. Thermal Analysis of High Performance Ball Screw Pair by Finite Element Method[J]. The Journal of New Industrialization, 2016, 6(11): 58-63. | |
| [37] | 韩军, 张玲聪, 李明亚. 高速实心/空心滚珠丝杠热变形受轴承副摩擦热影响分析[J]. 机械设计, 2017, 34(3): 63-69. |
| HAN Jun, ZHANG Lingcong, LI Mingya. Analysis of High Speed Solid/Hollow Ball Screw Thermal Deformation Caused by Bearing Pair Friction Heat[J]. Journal of Machine Design, 2017, 34(3): 63-69. | |
| [38] | SHI Hu, MA Chi, YANG Jun, et al. Investigation into Effect of Thermal Expansion on Thermally Induced Error of Ball Screw Feed Drive System of Precision Machine Tools[J]. International Journal of Machine Tools and Manufacture, 2015, 97: 60-71. |
| [39] | GAO Xiangsheng, GUO Yueyang, HANSON D A, et al. Thermal Error Prediction of Ball Screws Based on PSO-LSTM[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(5): 1721-1735. |
| [40] | WANG Min, LU Wenlong, ZHANG Kuan, et al. Thermal Error Prediction of Ball Screws in Full-time Series Using Working Condition Data Based on a Mechanism and Data Hybrid-driven Model[J]. The International Journal of Advanced Manufacturing Technology, 2024, 133(3): 1443-1462. |
| [41] | GAO Xiangsheng, ZHANG Kuan, WANG Min, et al. Optimization of Nano Coating to Reduce the Thermal Deformation of Ball Screws[J]. Nanotechnology Reviews, 2021, 11(1): 438-451. |
| [42] | 徐阳阳, 祖莉, 汪远远, 等. 滚珠丝杠副热变形模型理论分析及其对定位精度影响的试验研究[J]. 组合机床与自动化加工技术, 2018(1): 1-3. |
| XU Yangyang, ZU Li, WANG Yuanyuan, et al. Theoretical Analysis and Experimental Study of Thermal Deformation Model of Ball Screw and Its Influence on Positioning Accuracy[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2018(1): 1-3. | |
| [43] | 刘更, 马尚君, 佟瑞庭, 等. 行星滚柱丝杠副的新发展及关键技术[J]. 机械传动, 2012, 36(5): 103-108. |
| LIU Geng, MA Shangjun, TONG Ruiting, et al. New Development and Key Technology of Planetary Roller Screw[J]. Journal of Mechanical Transmission, 2012, 36(5): 103-108. | |
| [44] | 乔冠. 行星滚柱丝杠副摩擦力矩及热特性的理论与实验研究[D]. 西安: 西北工业大学, 2019. |
| QIAO Guan. Theoretical and Experimental Research on the Friction Torque and Thermal Characteristics of the Planetary Roller Screw Mechanism[D]. Xi'an: Northwestern Polytechnical University, 2019. | |
| [45] | MIAO Jiacheng, DU Xing, LI Chaoyang, et al. Lubrication and Wear Analysis of Planetary Roller Screw Mechanism with Threaded Surface Roughness in Thermal Elastohydrodynamic Lubrication[J]. Tribology Transactions, 2022, 65(6): 1069-1087. |
| [46] | 赵炳荣. 差动式行星滚柱丝杠热力耦合分析及试验研究[D]. 重庆: 重庆大学, 2022. |
| ZHAO Bingrong. Thermal Coupling Analysis and Experimental Study of Differential Planetary Roller Screw[D]. Chongqing: Chongqing University, 2022. | |
| [47] | DU Chuanming, LIU Geng, QIAO Guan, et al. Transient Thermal Analysis of Standard Planetary Roller Screw Mechanism Based on Finite Element Method[J]. Advances in Mechanical Engineering, 2018, 10(12): 1687814018812305. |
| [48] | 李巧, 侯红玲, 王艳茹, 等. 循环式行星滚柱丝杠副的热力耦合特性研究[J]. 锻压技术, 2021, 46(2): 160-165. |
| LI Qiao, HOU Hongling, WANG Yanru, et al. Study on Thermal Mechanical Coupling Characteristics of Circulating Planetary Roller Screw Pair[J]. Forging & Stamping Technology, 2021, 46(2): 160-165. | |
| [49] | 许鹿辉, 范元勋, 李晓飞. 高过载脂润滑滚珠丝杠副流固耦合分析[J]. 机械制造与自动化, 2024, 53(1): 20-23. |
| XU Luhui, FAN Yuanxun, LI Xiaofei. Analysis of Fluid-structure Coupling of High Overload Grease Lubricated Ball Screw Pair[J]. Machine Building & Automation, 2024, 53(1): 20-23. | |
| [50] | 李雪晓, 段明德, 毕星瑞. 实心/空心滚珠丝杠动态、静态的热特性分析计算[J]. 制造技术与机床, 2023(4): 163-168. |
| LI Xuexiao, DUAN Mingde, BI Xingrui. Analysis and Calculation of Dynamic and Static Thermal Characteristics of Solid/Hollow Ball Screw[J]. Manufacturing Technology & Machine Tool, 2023(4): 163-168. | |
| [51] | QIAO Guan, LIU Geng, MA Shangjun, et al. Thermal Characteristics Analysis and Experimental Study of the Planetary Roller Screw Mechanism[J]. Applied Thermal Engineering, 2019, 149: 1345-1358. |
| [52] | GU Weikai, LI Chaoyang, MIAO Jiacheng, et al. Wear Prediction Method of Differential Planetary Roller Screws Considering the Ambient Temperature Variations[J]. Applied Sciences, 2023, 13(19): 10609. |
| [53] | GRAND S and VALEMBOID J M. Electromechanical Actuators Design for Thrust Vector Control [C]∥ Proceedings of the 2nd International Conference on Recent Advances in Aerospace Actuation Systems and Components. Toulouse, 2004: 21-27. |
| [54] | CHEN Kui, ZHAO Yongsheng, ZHENG Jigui, et al. Performance-degradation Analysis of the Planetary Roller Screw Mechanism under Multi-factor Coupling Effects[J]. Sensors, 2024, 24(14): 4460. |
| [55] | 罗韡, 陈兴辉, 王琛琛, 等. 基于热误差补偿的行星滚柱丝杠综合性能试验台设计与分析[J]. 农业装备与车辆工程, 2024, 62(1): 173-177. |
| LUO Wei, CHEN Xinghui, WANG Chenchen, et al. Design and Analysis of Comprehensive Performance Test-bed for Planetary Roller Screw Based on Thermal Error Compensation[J]. Agricultural Equipment & Vehicle Engineering, 2024, 62(1): 173-177. | |
| [56] | LIZON J L. Planetary Roller Screw for Cryogenic Applications[C]∥Advances in Optical and Mechanical Technologies for Telescopes and Instrumentation V. Montreal, 2022: 154. |
| [57] | MA S J, LIU G, QIAO G, et al. Thermo-mechanical Model and Thermal Analysis of Hollow Cylinder Planetary Roller Screw Mechanism[J]. Mechanics Based Design of Structures and Machines, 2015, 43(3): 359-381. |
| [58] | QIAO Guan, LIU Geng, MA Shangjun, et al. An Improved Thermal Estimation Model of the Inverted Planetary Roller Screw Mechanism[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232(23): 4430-4446. |
| [59] | MA Shangjun, ZHANG Chenhui, ZHANG Tao, et al. Thermo-mechanical Coupling–Based Finite Element Analysis of the Load Distribution of Planetary Roller Screw Mechanism[J]. Advances in Mechanical Engineering, 2018, 10(6): 1687814018775254. |
| [60] | MIAO Jiacheng, DU Xing, LI Chaoyang, et al. Multi-scale Modelling of the Thermally Coupled Planetary Roller Screw Mechanism with Curved Fractal Contact[J]. Meccanica, 2022, 57(11): 2771-2795. |
| [61] | ZHANG Luchao, YiOU, FENG Hutian. Prediction of the Thermal Elongation of the Ball Screw Mechanism under Various Rotational Speeds[J]. International Journal of Precision Engineering and Manufacturing, 2021, 22(7): 1221-1228. |
| [62] | WANG Haitong, LI Fuhua, CAI Yonglin, et al. Experimental and Theoretical Analysis of Ball Screw under Thermal Effect[J]. Tribology International, 2020, 152: 106503. |
| [63] | LI Tiejun, WANG Mengzhuo, ZHANG Yimin, et al. Real-time Thermo-mechanical Dynamics Model of a Ball Screw System Based on a Dynamic Thermal Network[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(1): 613-624. |
| [64] | 姜歌东, 王昊, 荆亚彬. 接触热阻对高速滚珠丝杠副温升特性的影响[J]. 吉林大学学报(工学版), 2025,55(6):1915-1922. |
| JIANG Gedong, WANG Hao, JING Yabin. Influence of Contact Thermal Resistance on the Temperature Rise Characteristics of High-speed Ball Screw[J]. Journal of Jilin University(Engineering and Technology Edition),2025,55(6):1915-1922. | |
| [65] | XU Z Z, LIU X J, KIM H K, et al. Thermal Error Forecast and Performance Evaluation for an Air-cooling Ball Screw System[J]. International Journal of Machine Tools and Manufacture, 2011, 51(7/8): 605-611. |
| [66] | JIN Chao, WU Bo, HU Youmin. Heat Generation Modeling of Ball Bearing Based on Internal Load Distribution[J]. Tribology International, 2012, 45(1): 8-15. |
| [67] | SATHIYA MOORTHY R, PRABHU RAJA V. An Improved Analytical Model for Prediction of Heat Generation in Angular Contact Ball Bearing[J]. Arabian Journal for Science and Engineering, 2014, 39(11): 8111-8119. |
| [68] | BRYAN J. International Status of Thermal Error Research (1990)[J]. CIRP Annals, 1990, 39(2): 645-656. |
| [69] | MAYR J, JEDRZEJEWSKI J, UHLMANN E, et al. Thermal Issues in Machine Tools[J]. CIRP Annals, 2012, 61(2): 771-791. |
| [70] | 马尚君, 李晓风, 刘更, 等. 误差-磨损-温度变化耦合的行星滚柱丝杠副载荷分布[J]. 西北工业大学学报, 2017, 35(4): 655-660. |
| MA Shangjun, LI Xiaofeng, LIU Geng, et al. Load Distribution of Planetary Roller Screw Mechanisms with Error Wear Temperature Coupling[J]. Journal of Northwestern Polytechnical University, 2017, 35(4): 655-660. | |
| [71] | 李郝林, 陈琳. 滚珠丝杠磨削加工热变形误差的分段补偿方法[J]. 工具技术, 2009, 43(6): 53-54. |
| LI Haolin, CHEN Lin. Segmented Compensation Algorithmfor Thermal Deformation Error of Ball Screw in Grinding[J]. Tool Engineering, 2009, 43(6): 53-54. | |
| [72] | 李醒飞, 董成军, 陈诚, 等. 单热源作用下滚珠丝杠的温度场建模与热误差预测[J]. 光学精密工程, 2007, 20(2): 337-343. |
| LI Xingfei, DONG Chengjun, CHEN Cheng, et al. Temperature Model of Ball Screw and Its Thermal Error Prediction under Single Heat[J]. Optics and Precision Engineering, 2007, 20(2): 337-343 | |
| [73] | 孙廷英, 张义民, 李铁军. 混合神经网络用于滚珠丝杠热误差预测[J]. 机械设计与制造, 2024(1): 58-60. |
| SUN Tingying, ZHANG Yimin, LI Tiejun. Application of Hybrid Neural Network in Predicting Thermal Error of Ball Screw[J]. Machinery Design & Manufacture, 2024(1): 58-60. | |
| [74] | HALLMANN M, SCHLEICH B, WARTZACK S. From Tolerance Allocation to Tolerance-cost Optimization: a Comprehensive Literature Review[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(11): 4859-4912. |
| [75] | SIMON V. Influence of Tooth Errors and Misalignments on Tooth Contact in Spiral Bevel Gears[J]. Mechanism and Machine Theory, 2008, 43(10): 1253-1267. |
| [76] | DING Han, LI Hongping, HUANG Rong, et al. Adaptive Data-driven Prediction and Optimization of Tooth Flank Heat Treatment Deformation for Aerospace Spiral Bevel Gears by Considering Carburizing-meshing Coupling Effect[J]. International Journal of Heat and Mass Transfer, 2021, 174: 121301. |
| [77] | SUN Beier, LIU Huaming, TANG Jinyuan, et al. Optimization of Heat Treatment Deformation Control Process Parameters for Face-hobbed Hypoid Gear Using FEA-PSO-BP Method[J]. Journal of Manufacturing Processes, 2024, 117: 40-58. |
| [78] | 胡宗延. 基于微分运动的大规格滚齿机多源误差建模与补偿方法研究[D]. 重庆: 重庆大学, 2022. |
| HU Zongyan. Research on Multi-Source Error Modeling and Compensation Method for Large-scale Hobbing Machine Based on Differential Kinematics[D]. Chongqing: Chongqing University, 2022. | |
| [79] | 杨赫然, 李帅, 孙兴伟, 等. 基于改进松鼠搜索算法优化神经网络的数控机床进给系统热误差预测[J]. 仪器仪表学报, 2024, 45(1): 60-69. |
| YANG Heran, LI Shuai, SUN Xingwei, et al. Thermal Error Prediction of CNC Machine Tool Feed System Based on Neural Network Optimized by Improved Squirrel Search Algorithm[J]. Chinese Journal of Scientific Instrument, 2024, 45(1): 60-69. | |
| [80] | WU Huayang, LI Jiejing, LIU Haixu, et al. An Analysis of Heat Source Contribution and Design of Optimal Cooling Method for Ball Screw Feed System[J]. International Journal of Computer Integrated Manufacturing, 2025, 38(2): 200-215. |
| [81] | LIU Jialan, MA Chi, WANG Shilong, et al. Thermal Boundary Condition Optimization of Ball Screw Feed Drive System Based on Response Surface Analysis[J]. Mechanical Systems and Signal Processing, 2019, 121: 471-495. |
| [1] | 李颂华, 薛宝圆, 左闯. Si3N4耐高温全陶瓷向心关节轴承磨损性能研究[J]. 中国机械工程, 2025, 36(09): 1989-1995. |
| [2] | 李明范, 杨龙, 李晟, 郭欢, 付国强. 以热图像为输入的基于ResNet的机床主轴热误差建模方法[J]. 中国机械工程, 2025, 36(09): 2057-2067. |
| [3] | 刘思奇, 魏沛堂, 胡瑞, 杜雪松, 罗莉, 朱才朝, 周鹏亮. 行星滚柱丝杠螺纹加工误差统计分析与国内外对比研究[J]. 中国机械工程, 2025, 36(08): 1713-1727. |
| [4] | 李国龙1, 肖扬1, 李喆裕1, 徐凯2, 张薇1. 数控机床旋转轴多自由度静/热误差同步测量与建模[J]. 中国机械工程, 2024, 35(08): 1426-1434. |
| [5] | 李朕均, 赵春雨. 进给系统角接触球轴承的热力耦合分析[J]. 中国机械工程, 2023, 34(07): 821-829. |
| [6] | 徐荣飞, 范开国. 基于数字孪生的电主轴热特性研究[J]. 中国机械工程, 2022, 33(16): 1965-1971. |
| [7] | 张晨, 赵又群, 郑鑫, 杜宜燕. 随机载荷下机械弹性车轮的热力耦合耐久性研究[J]. 中国机械工程, 2021, 32(14): 1669-1676. |
| [8] | 白小帆;侯书军;李慨;曲云霞. 轴向低频振动辅助皮质骨钻削的钻削力和温升[J]. 中国机械工程, 2021, 32(03): 321-330. |
| [9] | 陈永亮1; 杨子超1;林恒利1;崔雷2;宋建岭3;王东坡2 . 拉锻式摩擦塞焊的热力耦合解析模型和试验验证[J]. 中国机械工程, 2020, 31(17): 2118-2127. |
| [10] | 聂昕1;肖兵兵1;申丹凤2;郭文峰1. 考虑变形热和摩擦热效应的热力耦合冲压研究[J]. 中国机械工程, 2020, 31(16): 2005-2015. |
| [11] | 黄智, 刘永超, 邓涛, 周涛, 祝云. [误差建模及精度保证方法]一种五轴数控机床热误差建模方法[J]. 中国机械工程, 2020, 31(13): 1529-1538. |
| [12] | 苗恩铭1;吕玄玄2;魏新园2;宋先进2;董云飞2. 基于状态空间模型的数控机床热误差建模[J]. 中国机械工程, 2019, 30(09): 1049-1055,1064. |
| [13] | 曹睿1;李笑1;关婷2;肖远松2. 膀胱动力泵电磁驱动系统的优化设计[J]. 中国机械工程, 2019, 30(04): 431-437,447. |
| [14] | 杨潇, 曹华军, 杜彦斌, 许磊, 陈永鹏. [绿色制造工艺和系统]基于切削比能的高速干切工艺刀具温升调控方法[J]. 中国机械工程, 2018, 29(21): 2559-2564. |
| [15] | 余剑武1,2;范光辉1,2;雷吉平2;李鑫2;张亚飞1. 动力电池组汇流排过载能力及电流均衡性影响因素研究[J]. 中国机械工程, 2017, 28(20): 2426-2433. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||