中国机械工程 ›› 2025, Vol. 36 ›› Issue (9): 2039-2046.DOI: 10.3969/j.issn.1004-132X.2025.09.016

• 智能制造 • 上一篇    

快速单曝光高动态范围高反光金属表面缺陷辨识算法研究

贾维昊1,2(), 王鹏2, 陈凯3, 仝飞3, 王国彪1,2()   

  1. 1.天津大学机械工程学院, 天津, 300350
    2.天津大学浙江国际创新设计与智造研究院, 绍兴, 312000
    3.宁波科诺精工科技有限公司, 宁波, 315000
  • 收稿日期:2024-09-13 出版日期:2025-09-25 发布日期:2025-10-15
  • 通讯作者: 王国彪
  • 作者简介:贾维昊,男,1999年生,硕士研究生。研究方向为机器视觉。E-mail:2022201240@tju.edu.cn
    王国彪*(通信作者),男,1964年生,教授、博士研究生导师。研究方向为机械优化设计、智能检测、激光制造与增材制造战略研究。E-mail:gbwang@tju.edu.cn
  • 基金资助:
    宁波市重大科技任务攻关项目(2022Z055)

Research on Rapid Single-exposure HDR Defect Recognition Algorithm for Highly Reflective Metal Surfaces

Weihao JIA1,2(), Peng WANG2, Kai CHEN3, Fei TONG3, Guobiao WANG1,2()   

  1. 1.School of Mechanical Engineering,Tianjin University,Tianjin,300350
    2.International Institute for Innovative Design and Intelligent Manufacturing of Tianjin University in Zhejiang,Shaoxing,Zhejiang,312000
    3.Ningbo Kono Precision Technology Co. ,Ltd. ,Ningbo,Zhejiang,315000
  • Received:2024-09-13 Online:2025-09-25 Published:2025-10-15
  • Contact: Guobiao WANG

摘要:

基于细节增强手段以及循环一致性生成对抗网络(CycleGAN)提出了一种快速单曝光高动态范围(HDR)的高反光金属表面缺陷辨识算法。将输入的低动态范围图像转换为HSV颜色空间,经导向滤波处理后得到亮度层和细节层;利用CycleGAN网络对这些层的动态范围分别进行扩展,并将扩展动态范围后的亮度层和细节层进行加权融合,经过滤波去噪后得到利于缺陷辨识的HDR图像;通过阈值分割、特征筛选、形态学处理等手段对HDR图像进行缺陷辨识。将该单曝光算法与经典的3种单曝光算法和1种多曝光算法进行实验对比分析,用峰值信噪比、图像熵、处理时间、灰度直方图、辨识结果5项指标综合评价实验结果。结果表明,该算法相较于其他3种单曝光算法能更好地解决过曝光问题,接近多曝光算法水平,且算法处理时间更短,能满足在线检测的需求,同时该算法挖掘图像细节信息的能力优于其他算法,辨识准确度更高。

关键词: 高反光金属, 单曝光高动态范围成像, 细节增强, 循环一致性生成对抗网络

Abstract:

A rapid single-exposure HDR defect recognition algorithm was proposed for highly reflective metal surfaces. This algorithm was based on detail enhancement techniques and CycleGAN. The input low dynamic range (LDR) images were first converted to HSV color space and processed with guided filtering to obtain luminance and detail layers. The CycleGAN network was then used to enhance the dynamic range of these layers separately. The enhanced luminance and detail layers were weighted and fused, followed by filtering and denoising to produce an HDR image suitable for defect recognition. Defects were identified in the HDR image using threshold segmentation, feature selection, and morphological processing. This single-exposure algorithm was experimentally compared with three classic single-exposure algorithms and one multi-exposure algorithm. The evaluation was based on five metrics: peak signal-to-noise ratio(PSNR), image entropy, processing time, gray histograms, and recognition results. The experimental results indicate that the algorithm herein outperforms three other single-exposure algorithms in effectively addressing overexposure issues, achieving results comparable to multi-exposure algorithms. Additionally, it has a shorter processing time, making it suitable for online detection. Furthermore, this algorithm demonstrates superior capability in extracting image detail information compared to other algorithms, resulting in higher accuracy in recognition.

Key words: highly reflective metal, single-exposure high dynamic range(HDR) imaging, detail enhancement, cycle-consistent generative adversarial network (CycleGAN)

中图分类号: