中国机械工程 ›› 2025, Vol. 36 ›› Issue (06): 1300-1313.DOI: 10.3969/j.issn.1004-132X.2025.06.017
姜峰1,2*;胡荣辉1;邓杰东1;张添1;黄国钦1,2;徐仰立1,2;李友生3;刘超4
出版日期:
2025-06-25
发布日期:
2025-08-04
作者简介:
姜峰*,男,1981 年生,教授、博士研究生导师。研究方向为精密超精密加工技术、切削过程数值仿真技术、刀具设计技术。E-mail:jiangfeng@hqu.edu.cn。
基金资助:
JIANG Feng1,2*;HU Ronghui1;DENG Jiedong1;ZHANG Tian1;HUANG Guoqin1,2;XU Yangli1,2;LI Yousheng3;LIU Chao4
Online:
2025-06-25
Published:
2025-08-04
摘要: 综述了增材制造硬质合金刀具的两类技术路线:基于热成形的粉末床熔融技术路线和基于生坯冷打印、脱脂和烧结工艺的冷沉积烧结技术路线。粉末床熔融技术能够制备出接近理论密度的硬质合金刀具,但存在孔隙、裂纹、脱碳以及钴蒸发等问题,通过调整激光能量密度、扫描速度和粉末特性等参数能够显著改善打印件的质量;冷沉积烧结技术能够制备出表面质量优良且力学性能优异的硬质合金刀具,但存在黏结剂残留、制件收缩等问题,通过优化黏结剂种类、脱脂工艺和烧结温度等关键参数可以提高制件的密度和力学性能。同时采用真空烧结、热压、热等静压等热处理工艺能够进一步消除材料内部缺陷,提高刀具整体性能。
中图分类号:
姜峰1, 2, 胡荣辉1, 邓杰东1, 张添1, 黄国钦1, 2, 徐仰立1, 2, 李友生3, 刘超4. 硬质合金刀具增材制造技术发展趋势和展望[J]. 中国机械工程, 2025, 36(06): 1300-1313.
JIANG Feng1, 2, HU Ronghui1, DENG Jiedong1, ZHANG Tian1, HUANG Guoqin1, 2, XU Yangli1, 2, LI Yousheng3, LIU Chao4. Development Trends and Prospects of Additive Manufacturing Technology for Cemented Carbide Cutting Tools[J]. China Mechanical Engineering, 2025, 36(06): 1300-1313.
[1]中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[N].人民日报, 2021-03-13(001). Outline of the 14th Five-Year Plan for National Economic and Social Development and the Long-Range Objectives through the Year 2035 of the Peoples Republic of China[N]. Peoples Daily, 2021-03-13(001). [2]刘松瑶.加快建设质量强国推动高质量发展[N].中国质量报, 2023-08-30(T05). LIU Songyao. Accelerate Building a Quality Power to Promote High-quality Development[N]. China Quality Daily, 2023-08-30(T05). [3]工业和信息化部装备工业一司.《机械行业稳增长工作方案(2023—2024年)》解读[N]. 新能源汽车报,2023-09-11(004). Ministry of Industry and Information Technology of the Peoples Republic of China, Department of Equipment Industry I. Interpretation of the “Work Plan for Stable Growth in the Machinery Industry(2023—2024) ”[N]. New Energy Vehicle Weekly,2023-09-11(004). [4]YU H, HAN Z, ZHANG J, et al. Bionic Design of Tools in Cutting:Reducing Adhesion, Abrasion or Friction[J]. Wear, 2021, 482/483:203955. [5]YANG H, FENG P, ZHANG J, et al. Toward Understanding the Mechanism in Ultrasonic Cutting of Silica Aerogel Composites Using a Bionic Micro-serrated Tool[J]. Journal of Manufacturing Processes,2023, 101, 480-500. [6]WEI Hong, CHEN Guangjun, CHEN Zhuang, et al.Progress on Bionic Textured Cutting Tools:a Review and Prospects[J].Journal of Bionic Engineering, 2023,21:19-55. [7]KORENKOVS A, GERINS E, KROMANIS A. The Design and Performance of Internally Cooled Cutting Tools for Turning:a Literature Review[J]. Latvian Journal of Physics and Technical Sciences,2023, 60(5), 73-94. [8]BIERMANN D, OEZKAYA E. CFD Simulation for Internal Coolant Channel Design of Tapping Tools to Reduce Tool Wear[J].CIRP Annals,2017, 66(1), 109-112. [9]GAN Y, WANG Y, LIU K, et al. The Development and Experimental Research of a Cryogenic Internal Cooling Turning Tool[J]. Journal of Cleaner Production,2021, 319, 128787. [10]RANJAN P, HIREMATH S. Role of Textured Tool in Improving Machining Performance:a Review[J]. Journal of Manufacturing Processes,2019,43, 47-73. [11]KAWASEGI N, KAWASHIMA T, MORITA N, et al. Effect of Texture Shape on Machining Performance of Textured Diamond Cutting Tool[J]. Precision Engineering,2019, 60, 21-27. [12]SUGIHARA T, ENOMOTO T. Performance of Cutting Tools with Dimple Textured Surfaces:a Comparative Study of Different Texture Patterns[J]. Precision Engineering,2017, 49, 52-60. [13]JI W, ZOU B, ZHANG S, et al. Design and Fabrication of Gradient Cermet Composite Cutting Tool, and Its Cutting Performance[J]. Journal of Alloys and Compounds,2018, 732, 25-31. [14]YI M, WANG J, XIAO G, et al. Effect of Gradient Design on the Mechanical Property and Friction Performance of Nano Self-lubricating Ceramic Cutting Tool Material[J]. Ceramics International,2022, 48(5), 7045-7055. [15]NOVK P. Advanced Powder Metallurgy Technologies[J]. Materials,2020, 13(7), 1742. [16]DENG Y, CHEN W, LI B, et al. Physical Vapor Deposition Technology for Coated Cutting Tools:a Review[J]. Ceramics International,2020, 46(11), 18373-18390. [17]GANESHKUMAR S, VENKATESH S, PARANTHAMAN P, et al. Performance of Multilayered Nanocoated Cutting Tools in High-speed Machining:a Review[J]. International Journal of Photoenergy,2022, 1:5996061. [18]BOBZIN K, BRGELMANN T, MAIER H J, et al. Influence of Residual Stresses in Hard Tool Coatings on the Cutting Performance[J]. Journal of Manufacturing Processes,2021, 69, 340-350. [19]ARMSTRONG M, MEHRABI H, NAVEED N. An Overview of Modern Metal Additive Manufacturing Technology[J]. Journal of Manufacturing Processes, 2022, 84, 1001-1029. [20]ERTAS A, STROUD A. Additive Manufacturing Research and Applications[J]. Metals,2022, 12(4), 634. [21]SALMI M. Additive Manufacturing Processes in Medical Applications[J]. Materials,2021, 14(1), 191. [22]YAO L, RAMESH A, XIAO Z, et al. Multimetal Research in Powder Bed Fusion:a Review[J]. Materials,2023, 16(12), 4287. [23]GAO B, ZHAO H, PENG L, et al. A Review of Research Progress in Selective Laser Melting(SLM)[J]. Micromachines,2022, 14(1), 57. [24]WANG D, SONG C, YANG Y, et al. Research on the Redesign of Precision Tools and Their Manufacturing Process Based on Selective Laser Melting(SLM)[J]. Rapid Prototyping Journal,2016, 22(1), 104-114. [25]WANG J, TANG H. Review on Metals Additively Manufactured by SEBM[J]. Materials Technology, 2015,31(2):1753555715Y. [26]KRNER C. Additive Manufacturing of Metallic Components by Selective Electron Beam Melting:a Review[J]. International Materials Reviews,2016, 61(5):361-377. [27]PADMAKUMAR M. Additive Manufacturing of Tungsten Carbide Hardmetal Parts by Selective Laser Melting(SLM), Selective Laser Sintering(SLS) and Binder Jet 3D Printing(BJ3DP)Techniques[J]. Lasers in Manufacturing and Materials Processing,2020, 7(3):338-371. [28]郑敏利,何春生,杨树财,等. 一种基于3D打印技术的微织构硬质合金球头铣刀制备方法:CN106363168A[P].2016-12-02. ZHENG Minli, HE Chunsheng, YANG Shucai, et al. A Preparation Method of Micro-textured Cemented Carbide Ball-end Milling Cutter Based on 3D Printing Technology:CN106363168A[P].2016-12-02. [29]雷尼绍.KOMET GROUP使用金属3D打印切削刀具[J]. 工具技术,2017,51(11):17. RENISHAW. The KOMET GROUP Uses Metal 3D Printing for Cutting Tools[J]. Tool Engineering, 2017, 51(11):17. [30]GEOFFREY M,RAMKUMAR R,MARK B. Improvements in or Relating to the Control of a Chain of Machines, Including an Additive Manufacturing Machine, in the Manufacture of a Workpiece:WO2016GB53036[P].2017-04-06. [31]刘旭东. 金属粉末床激光熔融路径规划与控制研究[D].长沙:湖南大学, 2019. LIU Xudong. Research on Path Planning and Control of Laser Melting for Metal Powder Bed[D]. Changsha: Hunan University, 2019. [32]郭瑜,龙学湖,刘敏,等. 粉末床熔融增材制造用金属粉末的研究现状[J]. 中国建材科技,2021, 30(1): 6-10. GUO Yu, LONG Xuehu, LIU Min, et al. Research Status of Metal Powder for Powder Bed Fusion Additive Manufacturing[J]. China Building Materials Science and Technology, 2021, 30(1), 6-10. [33]XING M, WANG H, ZHAO Z, et al. Additive Manufacturing of Cemented Carbides Inserts with High Mechanical Performance[J]. Materials Science and Engineering:A,2022, 861:144350. [34]JOSEF T, TIM S, TIMO B, et al. Laser Sintering of Tungsten Carbide Cutter Shafts with Integrated Cooling Channels[C]∥ Proceeding of the 3rd International Conference on Process in Additive Manufacturing. Singapore:Pro-AM Conference Papers, 2018:297-302. [35]UHLMANN E, BERGMANN A, BOLZ R. Manufacturing of Carbide Tools by Selective Laser Melting[J]. Procedia Manufacturing,2018, 21: 765-773. [36]KONYASHIN I, HINNERS H, RIES B, et al. Additive Manufacturing of WC-13%Co by Selective Electron Beam Melting:Achievements and Challenges[J]. International Journal of Refractory Metals and Hard Materials,2019, 84:105028. [37]SOCHALSKI-KOLBUS L M, PAYZANT E A, CORNWELL P A, et al. Comparison of Residual Stresses in Inconel 718 Simple Parts Made by Electron Beam Melting and Direct Laser Metal Sintering[J]. Metallurgical and Materials Transactions A,2015, 46:1419-1432. [38]顾海峰. 金属粉末注射成形技术发展探究[J]. 中国金属通报, 2023(1):10-13. GU Haifeng. Exploration of the Development of Metal Powder Injection Molding Technology[J]. China Metal Bulletin, 2023(1):10-13. [39]USSELMANN M, BANSMANN J, KUEHNE A J C. Switchable Polyacrylonitrile-copolymer for Melt-processing and Thermal Carbonization 3D Printing of Carbon Supercapacitor Electrodes with High Capacitance[J]. Advanced Materials 2023, 35(6):2208484. [40]ZHAO Z, LIU R, CHEN J, et al. Additive Manufacturing of Cemented Carbide Using Analogous Powder Injection Molding Feedstock[J]. International Journal of Refractory Metals and Hard Materials,2023, 111:106095. [41]JUCAN O D, GDLEAN R V, CHICINAS H F, et al. Study on the Indirect Selective Laser Sintering(SLS) of WC-Co/PA12 Powders for the Manufacturing of Cemented Carbide Parts[J]. International Journal of Refractory Metals and Hard Materials,2021, 96: 105498. [42]LENGAUER W, DURETEK I, FRST M, et al. Fabrication and Properties of Extrusion-based 3D-printed Hardmetal and Cermet Components[J]. International Journal of Refractory Metals and Hard Materials,2019, 82:141-149. [43]WOLFE T A, SHAH R M, Prough K C, et al. Binder Jetting 3D Printed Cemented Carbide:Mechanical and Wear Properties of Medium and Coarse Grades[J]. International Journal of Refractory Metals and Hard Materials, 2023, 113:106197. [44]TADAYYON G, SESET K, PARLE E, et al.Additive Manufacturing of Diamond Cutting Tools-pushing the Boundaries of 3D Printing[C]∥Irish Polymers and Materials Conference.Ireland,2017:2017-08-31. [45]CHEN C, HUANG B, LIU Z, et al. Material Extrusion Additive Manufacturing of WC-9Co Cemented Carbide[J]. Additive Manufacturing,2024, 86:104203. [46]LIU J, LU Z, SHI Y, et al. Investigation into Manufacturing Injection Mold via Indirect Selective Laser Sintering[J]. The International Journal of Advanced Manufacturing Technology, 2010, 48(1/4), 155-163. [47]RUBIANO BUITRAGO J D, GIL PLAZAS A F, BOYAC MENDIVELSO L A, et al. Fused Filament Fabrication of WC-10Co Hardmetals:a Study on Binder Formulations and Printing Variables[J]. Journal of Manufacturing and Materials Processing,2024, 8(3):118. [48]HERZOG D, SEYDA V, WYCISK E, et al. Additive Manufacturing of Metals[J]. Acta Materialia,2016, 117:371-392. [49]ZHANG T, TAN Y, XU Y, et al. A Thermal-initiated Monomer Binder Enhancing Green Strength with Low Binder Saturation for Binder Jetting Additive Manufacturing of Cemented Carbide[J]. International Journal of Refractory Metals and Hard Materials,2024, 118:106494. [50]LEE S W, KIM Y W, JANG K M, et al. Phase Control of WC-Co Hardmetal Using Additive Manufacturing Technologies[J]. Powder Metallurgy,2022, 65(1):13-21. [51]CHEN C, HUANG B, LIU Z, et al. Additive Manufacturing of WC-Co Cemented Carbides:Process, Microstructure, and Mechanical Properties[J]. Additive Manufacturing,2023, 63:103410. [52]KO K H, KANG H G, HU Y H, et al. Effects of Heat Treatment on the Microstructure, Residual Stress, and Mechanical Properties of Co-Cr Alloy Fabricated by Selective Laser Melting[J]. Journal of the Mechanical Behavior of Biomedical Materials,2022, 126:105051. [53]XING M, WANG H, ZHAO Z, et al. SLM Printing of Cermet Powders:Inhomogeneity from Atomic Scale to Microstructure[J]. Ceramics International,2022, 48(20):29892-29899. [54]UHLMANN E, BERGMANN A, GRIDIN W, et al. Investigation on Additive Manufacturing of Tungsten Carbide-cobalt by Selective Laser Melting[J]. Procedia CIRP,2015, 35: 8-15. [55]CHEN J, HUANG M, FANG Z, et al. Microstructure Analysis of High Density WC-Co Composite Prepared by One Step Selective Laser Melting[J]. International Journal of Refractory Metals and Hard Materials,2019, 84:104980. [56]GUSAROV A V, PAVLOV M, SMUROV I. Residual Stresses at Laser Surface Remelting and Additive Manufacturing[J]. Physics Procedia,2011, 12:248-254. [57]ENNETI R K, PROUGH K C. Wear Properties of Sintered WC-12%Co Processed via Binder Jet 3D Printing(BJ3DP)[J]. International Journal of Refractory Metals and Hard Materials ,2019, 78:228-232. [58]LIU J, CHEN J, LIU B, et al. Microstructure Evolution of WC-20Co Cemented Carbide during Direct Selective Laser Melting[J]. Powder Metallurgy,2020, 63(5), 359-366. [59]LIU J, CHEN J, LU Y, et al. WC Grain Growth Behavior during Selective Laser Melting of WC-Co Cemented Carbides[J]. Acta Metallurgica Sinica(English Letters),2023, 36(6):949-961. [60]王迪,黄锦辉,谭超林,等.激光增材制造过程中循环热输入对组织和性能的影响[J]. 金属学报, 2022, 58(10):1221-1235. WANG Di, HUANG Jinhui, TAN Chaolin, et al. Effect of Cyclic Thermal Input on Microstructure and Properties during Laser Additive Manufacturing[J]. Acta Metallurgica Sinica, 2022, 58(10):1221-1235. [61]LIU D, YUE W, KANG J, et al. Effects of Different Substrates on the Formability and Densification Behaviors of Cemented Carbide Processed by Laser Powder Bed Fusion[J]. Materials,2021, 14(17):5027. [62]WATRING D S, BENZING J T, HRABE N, et al. Effects of Laser-energy Density and Build Orientation on the Structure-property Relationships in as-Built Inconel 718 Manufactured by Laser Powder Bed Fusion[J]. Additive Manufacturing,2020, 36:101425. [63]KUMAR S, CZEKANSKI A. Optimization of Parameters for SLS of WC-Co[J]. Rapid Prototyping Journal,2017, 23(6):1202-1211. [64]KUMAR S. Process Chain Development for Additive Manufacturing of Cemented Carbide[J]. Journal of Manufacturing Processes, 2018, 34:121-130. [65]IBE H, KATO Y, YAMADA J, et al. Controlling WC/Co Two-phase Microstructure of Cemented Carbides Additive-manufactured by Laser Powder Bed Fusion:Effect of Powder Composition and Post Heat-treatment[J]. Materials & Design,2021, 210:110034. [66]GOKULDOSS P K, KOLLA S, ECKERT J. Additive Manufacturing Processes:Selective Laser Melting, Electron Beam Melting and Binder Jetting-selection Guidelines[J]. Materials, 2017, 10(6):672. [67]ENNETI R K, PROUGH K C. Effect of Binder Saturation and Powder Layer Thickness on the Green Strength of the Binder Jet 3D Printing(BJ3DP) WC-12%Co Powders[J]. International Journal of Refractory Metals and Hard Materials ,2019, 84:104991. [68]MOSTAFAEI A, DE VECCHIS P R, KIMES K A, et al. Effect of Binder Saturation and Drying Time on Microstructure and Resulting Properties of Sinter-HIP Binder-jet 3D-printed WC-Co Composites[J]. Additive Manufacturing, 2021, 46:102128. [69]XU Z, MEENASHISUNDARAM G K, NG F L. High-density WC-45Cr-18Ni Cemented Hard Metal Fabricated with Binder Jetting Additive Manufacturing[J]. Virtual and Physical Prototyping,2022, 17(1):92-104. [70]WOLFE T, SHAH R, PROUGH K, et al. Coarse Cemented Carbide Produced via Binder Jetting 3D Printing[J]. International Journal of Refractory Metals and Hard Materials,2023, 110:106016. [71]ZHANG X, GUO Z, CHEN C, et al. Additive Manufacturing of WC-20Co Components by 3D Gel-printing[J]. International Journal of Refractory Metals and Hard Materials,2018, 70:215-223. [72]XIANG Z, LI Z, CHANG F, et al. Effect of Heat Treatment on the Microstructure and Properties of Ultrafine WC-Co Cemented Carbide[J]. Metals,2019, 9(12):1302. [73]SKORDARIS G, BOUZAKIS K D, STERGIOUDI F, et al. Cutting Performance Improvement of MTCVD Coated Cemented Carbide Inserts via Appropriate Heat Treatment[J]. CIRP Annals,2020, 69(1):45-48. [74]FRIES S, VOGELPOTH A, KALETSCH A, et al. Influence of Post Heat Treatment on Microstructure and Fracture Strength of Cemented Carbides Manufactured Using Laser-based Additive Manufacturing[J]. International Journal of Refractory Metals and Hard Materials,2023, 111:106085. [75]AGYAPONG J, CZEKANSKI A, BOAKYE YIADOM S, et al. WITHDRAWN:Effect of Heat Treatment on Microstructural Evolution and Properties of Cemented Carbides(WC-17Co) Processed by Selective Laser Sintering[J]. Materials Science and Engineering:A ,2019:138291. [76]K A, BRICN D, PRCHA V, et al. The Potential for Heat Treating Cemented Carbides[J]. Manufacturing Technology,2018, 18(4):600-604. [77]FANG Z Z, WANG H, KUMAR V. Coarsening, Densification, and Grain Growth during Sintering of Nano-sized Powders:a Perspective[J]. International Journal of Refractory Metals and Hard Materials,2017, 62:110-117. [78]JIA C, SUN L, TANG H, et al. Hot Pressing of Nanometer WC-Co Powder[J].International Journal of Refractory Metals and Hard Materials,2007, 25(1):53-56. [79]MIODOWNIK M, DERBY B. Hot Isostatic Press Joining of Cemented Carbides[J]. Journal of the American Ceramic Society,1999, 82(12):3616-3618. [80]ZHOU X, XU Z, WANG K, et al. One-step Sinter-HIP Method for Preparation of Functionally Graded Cemented Carbide with Ultrafine Grains[J]. Ceramics International ,2016, 42(4):5362-5367. [81]YOUNG B, HEELAN J, LANGAN S, et al. Novel Characterization Techniques for Additive Manufacturing Powder Feedstock[J]. Metals, 2021, 11(5):720. [82]ZACHERT C, LIU H, LAKNER T, et al. CFD Simulation to Optimize the Internal Coolant Channels of an Additively Manufactured Milling Tool[J]. Procedia CIRP,2021, 102:234-239. [83]WANG D, YU C, MA J, et al. Densification and Crack Suppression in Selective Laser Melting of Pure Molybdenum[J]. Materials Design,2017, 129, 44-52. [84]DANISH M, GUPTA M K, GHAZALI S M, et al. Tool Wear and Surface Roughness Characteristics in Sustainable Machining of Additively Manufactured Titanium Alloys[J]. Journal of Materials Research and Technology, 2024, 30:2955-2967. |
[1] | 韩飞燕, 赵一鹏, 李洪阳, 张浩, 王彻, 彭先龙, 张传伟. 基于刀具许用载荷的复杂型腔多刀具优化铣削方法[J]. 中国机械工程, 2025, 36(05): 986-994. |
[2] | 姜世杰1, 2, 许子沼1, 李曙光1, 王菲1, 黄绪震3. 17-4PH不锈钢材料的金属熔丝成形及其制品力学性能研究[J]. 中国机械工程, 2025, 36(03): 593-603. |
[3] | 曾浩, 曹华军, 董俭雄. 基于ISABO-IBiLSTM模型的刀具磨损预测方法[J]. 中国机械工程, 2024, 35(11): 1995-2006. |
[4] | 李悦1, 2, 谢恒1, 周公博1, 2, 周坪1, 2, 李猛钢1, 2. 基于半监督贝叶斯Transformer的刀具磨损软测量及不确定性分析方法[J]. 中国机械工程, 2024, 35(11): 2015-2025. |
[5] | 吴蒙华1, 姜炳春1, 肖雨晴2, 贾卫平2. 磁场对无掩模定域性电沉积增材制造三维微结构生长模式的影响[J]. 中国机械工程, 2024, 35(11): 2035-2042. |
[6] | 聂鹏1, 杨程越1, 彭新月1, 于家鹤2, 潘五九1. 采用空间和通道激励注意力机制优化ResNet-50的CFRP/TC4叠层材料钻削刀具磨损状态监测[J]. 中国机械工程, 2024, 35(10): 1793-1801. |
[7] | 张珞1, 刘明明2, 陈锐敏1, 但鹏1, 郭楠1. 激光选区熔化成形大尺寸薄壁件变形控制仿真与试验研究[J]. 中国机械工程, 2024, 35(09): 1653-1658,1709. |
[8] | 王秋莲1, 欧桂雄1, 徐雪娇1, 刘锦荣1, 马国红2, 邓红标2. 基于VMD-SSA-LSTM考虑刀具磨损的数控铣床切削功率预测模型研究[J]. 中国机械工程, 2024, 35(06): 1052-1063. |
[9] | 韩飞燕, 顾志成, 赵一鹏, 张传伟. 基于参数映射的叶轮粗加工椭圆摆线轨迹优化[J]. 中国机械工程, 2024, 35(03): 438-444,456. |
[10] | 杜煦, 常泽鑫, 郑军强, 任鹏飞. 一种考虑关节跃度约束的实时刀具路径光顺算法[J]. 中国机械工程, 2024, 35(02): 280-286. |
[11] | 张镇, 郭策, 胡财吉, 郑威. 基于增材制造技术的自修复结构设计及修复性能研究[J]. 中国机械工程, 2024, 35(01): 144-151. |
[12] | 勾睿杰, 张晓峰, 张鸿滨, 姚俊, 李勋. 刀具磨损对Allvac 718Plus高温合金铣削加工表面完整性及疲劳性能的影响[J]. 中国机械工程, 2023, 34(24): 2920-2926. |
[13] | 李小睿, 赵威, 李浩, 史卫奇, 何宁. 高压低温CO2射流冷却条件下高速车削淬硬轴承钢的试验研究[J]. 中国机械工程, 2023, 34(24): 2975-2985. |
[14] | 薛凯, 郭润兰, 黄晖阳, 黄华. 基于点云数据的增材制造模型结构优化方法[J]. 中国机械工程, 2023, 34(20): 2482-2488. |
[15] | 柯庆镝, 罗俊友, 蒋守志, 黄海鸿, . 基于涂层材料分布状态的超声应力反演模型构建[J]. 中国机械工程, 2023, 34(18): 2230-2237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||