中国机械工程 ›› 2025, Vol. 36 ›› Issue (06): 1178-1187,1221.DOI: 10.3969/j.issn.1004-132X.2025.06.005
张广帅;孙亮波*;刘小翠;章德平;周华西
出版日期:
2025-06-25
发布日期:
2025-08-01
作者简介:
张广帅,男,1995年生,硕士研究生。研究方向为机构的型综合。E-mail:zsg6869@139.com。
基金资助:
ZHANG Guangshuai;SUN Liangbo*;LIU Xiaocui;ZHANG Deping;ZHOU Huaxi
Online:
2025-06-25
Published:
2025-08-01
摘要: 同构判定是运动链型综合过程中一个关键步骤。提出了一种新的描述运动链信息的全息矩阵(MWI),以及基于此的复铰、多元构件判定原理。在全息下三角矩阵(LTMWI)可以确定运动链结构唯一性理论基础上,提出了一种全息下三角矩阵变换对比的同构判定新方法。该方法基于构件、关键点编号变换定律,将运动链表示为下三角全息矩阵并选定基准矩阵,通过关键点信息进行分组排列并将同组关键点非0元素前移,细分确定和待确定的关键点,在假定变换矩阵中所有关键点与基准矩阵中所有关键点位置逐一对应的情况下,对有限个变换矩阵与基准矩阵进行对比。该方法具有原理易于理解、程序设计容易、判定过程只需检索对比等优点,可快速获得两个运动链的同构判定结果。对多个运动链的分析结果表明了该方法的上述特点。
中图分类号:
张广帅, 孙亮波, 刘小翠, 章德平, 周华西. 基于全息下三角矩阵变换对比的运动链同构判定方法[J]. 中国机械工程, 2025, 36(06): 1178-1187,1221.
ZHANG Guangshuai, SUN Liangbo, LIU Xiaocui, ZHANG Deping, ZHOU Huaxi. Isomorphism Identification Method for Kinematic Chain Based on Exchange and Comparison of Lower Triangular Matrix with Whole Information[J]. China Mechanical Engineering, 2025, 36(06): 1178-1187,1221.
[1]POZHBELKO V, ERMOSHINA E. Number Structural Synthesis and Enumeration Process of All Possible Sets of Multiple Joints for 1-DOF up to 5-loop 12-link Mechanisms on Base of New Mobility Equation[J]. Mechanism and Machine Theory, 2015, 90:108-127. [2]ZOU Yanhuo. An Algorithm for Structural Synthesis of Planar Simple and Multiple Joint Kinematic Chains[J]. Proceedings of Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science, 2014,228(12):2178-2192. [3]WEN X, SUN W, WANG S, et al. A New Rigid Sub-chain Identification and Elimination Method of Kinematic Chains with Multiple Joints[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science, 2024, 238(5):1324-1339. [4]DENG T, XU H, WU C, et al. Topological Symmetry Identification of Kinematic Chains Based on Topological Index[J]. Mechanism and Machine Theory, 2020, 154:104099. [5]丁华锋,黄真,曹毅.运动链拓扑图的自动生成及图谱库的建立[J].机械工程学报,2006,42(4):32-36. DING Huafeng,HUANG Zhen,CAO Yi. The Automatic Generation of Motion Chain Topological Graph and the Establishment of a Diagram Library[J].Journal of Mechanical Engineering,2006,42(4):32-36. [6]MRUTHYUNJAYA T S, BALASUBRAMANIAN H R. In Quest of a Reliable and Efficient Computational Test for Detection of Isomorphism in Kinematic Chains[J]. Mechanism and Machine Theory,1987,22(2):131-139. [7]BALASUBRAMANIAN K, PARTHASARATHY K R. In Search of a Complete Invariant for Graphs[J]. Lecture Notes in Mathematics,1981,885(1):42-59. [8]YAN H S, HWANG W M. Method for the Identification of Planar Linkage Chains[J]. Journal of Mechanisms, Transmissions, and Automation in Design, 1983, 105(4):658-662. [9]RAI R K, PUNJABI S. A New Algorithm of Links Labelling for the Isomorphism Detection of Various Kinematic Chains Using Binary Code[J]. Mechanism and Machine Theory, 2018, 131:1-32. [10]AMBEKAR A G, AGRAWAL V P. CanonicalNumbering of Kinematic Chains and Isomorphism Problem:Min Code[J]. Mechanism and Machine Theory,1987,22(5):453-461. [11]AMBEKAR A G, AGRAWAL V P. Identification of Kinematic Chains, Mechanisms, Path Generators and Function Generators Using Min Codes[J]. Mechanism and Machine Theory,1987,22(5):463-471. [12]RAO A C,VARADA R D. Application of the Hamming Number Technique to Detect Isomorphism among Kinematic Chains and Inversions[J]. Mechanism and Machine Theory,1991,26(1):55-75. [13]RAO A C, RAO C N. Loop Based Pseudo Hamming Values—Ⅰ Testing Isomorphism and Rating Kinematic Chains[J]. Mechanism and Machine Theory, 1993, 28(1):113-127. [14]KAMESH V V, RAO K M, RAO A B S. An Innovative Approach to Detect Isomorphism in Planar and GearedKinematic Chains Using Graph Theory[J]. Journal of Mechanical Design,2017,139(12):122301. [15]SUN Liang, YE Zhizheng, CUI Rongjiang,et al. Compound Topological Invariant Based Method for Detecting Isomorphism in Planar Kinematic Chains[J]. Journal of Mechanisms and Robotics,2020,12(5):054504. [16]DING Huafeng,HUANG Zhen. IsomorphismIdentification of Graphs:Especially for the Graphs of Kinematic Chains[J]. Mechanism and Machine Theory,2008,44(1):122-139. [17]CHU Jinkui, ZOU Yanhuo. An Algorithm for Structural Synthesis of Planar Simple and Multiple Joint Kinematic Chains[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2014,228(12):2178-2192. [18]WANG L, SUN L, CUI R, et al. Novel Loop Tree for the Similarity Recognition of Kinematic Chains[J]. Mechanical Sciences, 2022, 13(1):371-386. [19]孙亮波,洪熙熙,刘小翠,等.运动链基本环路集新的定义及其生成方法[J].中国机械工程,2023,34(9):1061-1066. SUN Liangbo,HONG Xixi,LIU Xiaocui,et al.New Definition of Basic Loop Set of Kinematic Chain and Its Generation Method[J].China Mechanical Engineering,2023,34(9):1061-1066. [20]周杨,畅博彦,金国光,等.面向变胞机构动力学建模的变拓扑构型数学描述方法[J].机械工程学报,2022,58(9):49-61. ZHOU Yang,CHANG Boyan, JIN Guoguang, et al.Mathematic Description Method of Variable Topology Configuration for Dynamic Modeling of Metamorphic Mechanism[J].Journal of Mechanical Engineering,2022,58(9):49-61. [21]LUCHUAN Y ,HONGBIN W ,SHUNQING Z .Graph Isomorphism Identification Based on Link-assortment Adjacency Matrix[J].Sādhanā,2022,47(3):151-165. [22]KECSKEMTHY A, DING Huafeng, YANG Wenjian,et al. Automatic Structural Synthesis of Planar Multiple Joint Kinematic Chains[J]. Journal of Mechanical Design, 2013,135(9):1-12. [23]HWANG W M, HWANG Y W. Computer-aided Structural Synthesis of Planar Kinematic Chains with Simple Joints[J]. Mechanism and Machine Theory, 1992, 27(2):189-199. [24]CUI Rongjiang,YE Zhizheng,SUN Liang,et al. TopologicalInvariant and Definition Method for Detecting Isomorphism in Planar Kinematic Chains[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2021,235(15):2715-2724. [25]DING Huafeng,HUANG Zhen. A Unique Representation of the Kinematic Chain and the Atlas Database[J]. Mechanism and Machine Theory,2006,42(6):637-651. |
[1] | 赵顺卿1, 翁铭泽2, 武建昫1, 姚燕安1. 一体化重构闭链腿机构的设计与越障性能分析[J]. 中国机械工程, 2025, 36(01): 47-58. |
[2] | 陈修龙, 王爱郭, 王景庆. 含转动副润滑间隙的多连杆机构动力学优化设计[J]. 中国机械工程, 2025, 36(01): 87-95. |
[3] | 胡波1, 2, 赵金君1, 2, 刘建正1, 2, 宗洪意1, 2. (3-RPS)+(2-RCR)混联机构末端约束分析[J]. 中国机械工程, 2024, 35(09): 1548-1558. |
[4] | 畅博彦1, 2, 关鑫1, 金国光1, 2, 梁栋1, 2. 多闭环厚板折展蜂窝机构的几何设计与性能分析[J]. 中国机械工程, 2024, 35(07): 1156-1167. |
[5] | 田立勇1, 唐瑞1, 于宁1, 杨秀宇1, 2, 秦文光3. 带式输送机不停机更换托辊机器人研究与应用[J]. 中国机械工程, 2024, 35(05): 938-949. |
[6] | 胡波, 安锦运, 尹来容, 周长江. 小模数齿轮传动的时变啮合刚度计算方法[J]. 中国机械工程, 2024, 35(01): 74-82. |
[7] | 汪启亮, 刘通, 李永起, 魏健鸣, 徐美娟, 洪永烽. 低寄生位移柔性平行微夹持器拓扑优化设计[J]. 中国机械工程, 2023, 34(21): 2577-2584,2591. |
[8] | 蒲志新, 郭建伟, 潘玉奇, 白杨溪. 2PPaPaR并联机构性能分析及优化设计[J]. 中国机械工程, 2023, 34(19): 2304-2312. |
[9] | 沈惠平, 李霞, 李菊, 李涛, 孟庆梅, 吴广磊. 约束支链或无约束支链对并联机构运动学与刚度性能的影响——以两个部分运动解耦的新型三平移并联机构的设计、分析及其优选为例[J]. 中国机械工程, 2023, 34(13): 1533-1549. |
[10] | 刘栋财, 董广宇, 杜玉红, 李文鹏, . 基于网格搜索算法的6-RUS并联机器人时间最优轨迹规划[J]. 中国机械工程, 2023, 34(13): 1589-1598. |
[11] | 杜中秋, 沈惠平, 孟庆梅, 李涛, 杨廷力. 运动解耦且正解符号化的8R两平移空间并联机构的设计与性能分析[J]. 中国机械工程, 2023, 34(12): 1425-1435. |
[12] | 孙亮波, 洪熙熙, 刘小翠, 刘新. 运动链基本环路集新的定义及其生成方法[J]. 中国机械工程, 2023, 34(09): 1061-1066,1076. |
[13] | 姬佳璐, 姚燕安, 张英, 兰国荣. 可重构闭链步行平台的设计与越障策略研究[J]. 中国机械工程, 2023, 34(05): 524-532,542. |
[14] | 陈鑫, 刘江南, 龙汪鹏, 吕剑文. 多交叉曲梁簧片柔性铰链的力学建模与性能分析[J]. 中国机械工程, 2023, 34(03): 269-276,286. |
[15] | 田启华, 舒正涛, 付君健, 杜义贤, 周祥曼, 田磊. 梯度空心多孔结构优化设计方法[J]. 中国机械工程, 2022, 33(23): 2867-2878. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||