中国机械工程 ›› 2025, Vol. 36 ›› Issue (03): 558-569.DOI: 10.3969/j.issn.1004-132X.2025.03.019

• 智能制造 • 上一篇    下一篇

冷轧带材多通道板形并行预报方法

段伯伟1;王东城1,2*;徐扬欢1;刘宏民1   

  1. 1.燕山大学国家冷轧板带装备及工艺工程技术研究中心,秦皇岛,066004
    2.金属成形技术与重型装备全国重点实验室,西安,710032

  • 出版日期:2025-03-25 发布日期:2025-04-23
  • 作者简介:段伯伟,男,1996年生,博士研究生。主要研究方向为带材板形检测与控制。E-mail:bwduan1@163.com。
  • 基金资助:
    国家自然科学基金(U21A20118);河北省自然科学基金(E2023203065);金属成形技术与重型装备全国重点实验室(中国重型院)开放课题(S2208100.W04)

Multi-channel Flatness Parallel Prediction Method for Cold Rolled Strips

DUAN Bowei1;WANG Dongcheng1,2*;XU Yanghuan1;LIU Hongmin1   

  1. 1.National Engineering Research Center for Equipment and Technology of Cold Rolling Strip,
    Yanshan University,Qinhuangdao,Hebei,066004
    2.National Key Laboratory of Metal Forming Technology and Heavy Equipment,Xian,710032

  • Online:2025-03-25 Published:2025-04-23

摘要: 采用集成学习方法研究了一种精度高、泛化能力强的冷轧带材板形预报方法。以工业大数据为基础构建模型训练所需的数据集具有数据规模大、板形多样化程度高的特点。根据轧机与板形仪间的相对位置进行时间滞后补偿处理,消除数据之间的时间不同步。利用数据挖掘技术中的孤立森林算法对数据中的异常点进行清洗,提高了训练数据质量和模型性能。基于极端梯度提升算法搭建多通道板形并行预报架构,利用处理后生产数据对此架构进行训练,得到冷轧带材板形预报模型(CCFD_M)。以模型CCFD_M为基础,提出板形通道优化算法消除预报结果的“伪板形”问题,得到实用版冷轧带材板形预报模型CCFD_OM。经测试集验证,模型CCFD_OM的预报误差指标MAE(平均绝对误差)和RMSE(均方根误差)分别达到0.4044I和0.6816I,拟合性能指标R2达到了0.83,能够满足实际生产要求。

关键词: 冷轧带材, 板形预报, 时间滞后补偿, 孤立森林算法, 极端梯度提升算法

Abstract: An ensemble learning method was employed to develop a high-accuracy, strong-generalization cold rolled strip flatness prediction approach. Firstly, a model training dataset was constructed based on industrial big data, which had large data scale and high degree of flatness diversity. The time lag compensation was employed to eliminate time asynchrony among data based on the relative position between rolling mill and flatness meter. The isolation forest algorithm of data mining technology was used to clean outliers in data, improving the quality of training data and model performance. Subsequently, an architecture of multi-channel flatness parallel prediction was constructed based on XGBoost algorithm. This architecture was trained using processed production dataset to obtain the cold rolled strip flatness prediction model(CCFD_M). Lastly, based on CCFD_M, a flatness channel optimization algorithm was proposed to eliminate the issue of “pseudo-flatness” in prediction results, and the practical version of cold rolled strip flatness prediction model(CCFD_OM) was obtained. After verification on test set, the prediction error indictors mean absolute error(MAE) and root mean square error(RMSE) of model CCFD_OM reach 0.4044I and 0.6816I, respectively. And the fitting performance indictor R2 reaches 0.83, which may meet the practical production requirements.

Key words: cold rolled strip, flatness prediction, time lag compensation, isolation forest algorithm, extreme gradient boosting(XGBoost) algorithm

中图分类号: