中国机械工程 ›› 2025, Vol. 36 ›› Issue (03): 570-575,583.DOI: 10.3969/j.issn.1004-132X.2025.03.020

• 智能制造 • 上一篇    下一篇

基于LQR和UKF的软体机器人无模型轨迹跟踪控制

关胜闯1;柳宇钧2;杨清昊1;刘兆冰1*   

  1. 1.武汉理工大学机电工程学院,武汉,430000
    2.宁波诺丁汉大学电气与电子工程系,宁波,315000

  • 出版日期:2025-03-25 发布日期:2025-04-23
  • 作者简介:关胜闯,男,1998年生,硕士研究生。研究方向为软体机器人建模与控制。E-mail:giky0915@163.com。
  • 基金资助:
    国家大学生创新创业训练计划(024104970)

Model-free Trajectory Tracking Control of Soft Robots Based on LQR and UKF

GUAN Shengchuang1;LIU Yujun2;YANG Qinghao1;LIU Zhaobing1*   

  1. 1.School of Mechanical and Electrical Engineering,Wuhan University of Technology,Wuhan,430000
    2.Department of Electrical and Electronic Engineering,University of Nottingham Ningbo China,
    Ningbo,Zhejiang,315000

  • Online:2025-03-25 Published:2025-04-23

摘要: 针对软体机器人精确建模和控制问题提出一种新颖的非线性估计和控制策略,用于控制二维气动软体机器人的动态性能。采用基于Koopman算子的数据驱动方法建立二维气动软体机器人的线性模型。利用无迹卡尔曼滤波器(UKF)进行传感器数据滤波和系统状态估计,同时利用线性二次型调节器(LQR)来实现轨迹跟踪的最优控制。仿真和实验比较结果一致表明,所提方法在轨迹跟踪性能方面优于另两种方法。

关键词: 软体机器人, Koopman算子, LQR控制, 无迹卡尔曼滤波器

Abstract: A novel nonlinear estimation and control strategy for controlling the dynamic performance of a 2D pneumatic soft robot was proposed to address the problems of accurate modelling and control of soft robots. Firstly, a linear model of the 2D pneumatic soft robot was established using a Koopman operator-based approach. Then, the UKF was proposed for sensor data filtering and system state estimation, while the LQR was used for optimal control of trajectory tracking. Simulation and experimental results consistently show that the strategy herein performs better than other two strategies  in terms of trajectory tracking.

Key words: soft robot, Koopman operator, linear quadratic regulator(LQR) control, unscented Kalman filter(UKF)

中图分类号: