[1]GU Yi, LU Xinzheng, XU Yongjia. A Deep Ensemble Learning-driven Method for the Intelligent Construction of Structural Hysteresis Models[J]. Computers & Structures, 2023, 286:107106.
[2]ZHANG Chen, YU Yewei, ZHOU Miaolei. Finite-time Adaptive Quantized Motion Control for Hysteretic Systems with Application to Piezoelectric-driven Micropositioning Stage[J]. IEEE/ASME Transactions on Mechatronics, 2023, 28(5):2541-2552.
[3]WANG Jianhui, ZHANG Hongkang, MA Kemao, et al. Neural Adaptive Self-triggered Control for Uncertain Nonlinear Systems with Input Hysteresis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(11):6206-6214.
[4]SABARIANAND D V, KARTHIKEYAN P, MUTHURAMALINGAM T. A Review on Control Strategies for Compensation of Hysteresis and Creep on Piezoelectric Actuators Based Micro Systems[J]. Mechanical Systems and Signal Processing, 2020, 140:106634.
[5]NGUYEN P B, CHOI S B, SONG B K. A New Approach to Hysteresis Modelling for a Piezoelectric Actuator Using Preisach Model and Recursive Method with an Application to Open-loop Position Tracking Control[J]. Sensors and Actuators A:Physical, 2018, 270:136-152.
[6]JUHSZ L, MAAS J, BOROVAC B. Parameter Identification and Hysteresis Compensation of Embedded Piezoelectric Stack Actuators[J]. Mechatronics, 2011, 21(1):329-338.
[7]GHAFARIRAD H, REZAEI S M, ZAREINEJAD M, et al. Disturbance Rejection-based Robust Control for Micropositioning of Piezoelectric Actuators[J]. Comptes Rendus Mécanique, 2013, 342(1):32-45.
[8]KHADRAOUI S, FAREH R, RAKOTONDRABE M. Nonlinear Tracking Differentiator and PD Controller for Piezoelectric Actuators in a Robotic Hand[J]. IFAC-PapersOnLine, 2023, 56(2):7808-7813.
[9]AGUIRRE G, JANSSENS T, van BRUSSEL H, et al. Asymmetric-hysteresis Compensation in Piezoelectric Actuators[J]. Mechanical Systems and Signal Processing, 2012, 30:218-231.
[10]SALAH M, SALEEM A. Hysteresis Compensation-based Robust Output Feedback Control for Long-stroke Piezoelectric Actuators at High Frequency[J]. Sensors and Actuators A:Physical, 2021, 319:112542.
[11]张连生, 张鹏程, 郝爽, 等. 基于电荷泵的压电致动器迟滞非线性改善研究[J]. 计量学报, 2023, 44(11):1646-1651.
ZHANG Liansheng, ZHANG Pengcheng, HAO Shuang, et al. Research on Hysteresis Nonlinearity Improvement of Piezoelectric Actuator Based on Charge Pump[J]. Acta Metrologica Sinica, 2023, 44(11):1646-1651.
[12]WANG Ruijin, WANG Wen, CHEN Zhanfeng, et al. Modeling and Compensation for Dynamic Hysteresis of Piezoelectric Actuators Based on Lissajous Curve[J]. Sensors and Actuators A:Physical, 2022, 335:113353.
[13]GU Guoying, ZHU Limin. Modeling of Rate-dependent Hysteresis in Piezoelectric Actuators Using a Family of Ellipses[J]. Sensors and Actuators A:Physical, 2011, 165(2):303-309.
[14]杨浩, 娄军强, 杨依领, 等. 压电纤维致动器的率相关偏置迟滞建模及补偿[J]. 振动、测试与诊断, 2023, 43(3):531-538.
YANG Hao, LOU Junqiang, YANG Yiling, et al. Dynamic Modeling and Feedforward Compensation of the Rate-dependent Bipolar Bias Hysteresis Nonlinearity of Marco Fiber Composites Actuators [J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(3):531-538.
[15]王琴琴, 周孟德, 孙晨晋, 等. 压电叠堆作动器率相关迟滞非线性建模研究[J]. 压电与声光, 2022, 44(6):907-912.
WANG Qinqin, ZHOU Mengde, SUN Chenjin, et al. Modeling on Rate-dependent Hysteresis Nonlinear Characteristics of Piezoelectric Stack Actuators[J]. Piezoelectrics & Acoustooptics, 2022, 44(6):907-912.
|