中国机械工程 ›› 2025, Vol. 36 ›› Issue (03): 493-503,514.DOI: 10.3969/j.issn.1004-132X.2025.03.013

• 机械基础工程 • 上一篇    下一篇

低频大位移多工作模式压电直线驱动器非线性迟滞控制及实验研究

李冲*;栢新;童玉健;方记文   

  1. 江苏科技大学机械工程学院,镇江,212100
  • 出版日期:2025-03-25 发布日期:2025-04-17
  • 作者简介:李冲*,男,1988年生,博士、副教授。主要研究方向为压电驱动与控制。E-mail:lichong@just.edu.cn。
  • 基金资助:
    国家自然科学基金(51905228);江苏高校“青蓝工程”优秀青年骨干教师资助项目(苏教师函〔2022〕29号);江苏省重点研发计划(BE2022062-3)

Nonlinear Hysteresis Control and Experimental Study of Low-frequency Large Displacement Multi-mode Piezoelectric Linear Actuators

LI Chong*;BAI Xin;TONG Yujian;FANG Jiwen   

  1. School of Mechanical Engineering,Jiangsu University of Science and Technology,Zhenjiang,
    Jiangsu,212100

  • Online:2025-03-25 Published:2025-04-17

摘要: 提出具有低频、大位移和高负载特性的压电直线驱动器,实现三种行程工作模式,能够满足不同工况的需要。分析了压电驱动器的工作原理和不同负载下的位移放大倍数。针对压电驱动器存在的迟滞非线性现象,建立了一种改进的迟滞非线性模型,该模型以PI为基础,通过遗传算法优化的反向传播神经网络(GA-BP)进行改进。建立了GA-BP前馈模糊自整定PID复合控制系统,开展了压电直线驱动器的迟滞非线性补偿实验。结果表明:两压电叠堆同时工作时压电驱动器的最大输出位移为558.3 μm,正弦信号下轨迹跟踪的最大相对误差为0.0573 μm。实施改进的控制策略有效提高了系统的性能,使得轨迹跟踪控制精度可达97%,延迟时间缩短至2 ms以内,并能在60 ms内实现控制反应。该策略不仅提高了系统响应的速度,还将稳态误差减小到0.09%以下,验证了压电驱动器的快速响应与低稳态误差的性能。

关键词: 压电驱动器, 大位移, 迟滞, 非线性模型, 控制系统

Abstract: A piezoelectric linear actuator featuring low frequency, large displacement, and high-load characteristics was proposed, capable of operating in three modes to accommodate a variety of operational conditions. The working principle of the actuators and the displacement amplification under different loads were analyzed. For the hysteresis nonlinear phenomenon of the piezoelectric actuators, an improved hysteresis nonlinearity model was developed, which was based on PI and enhanced through a genetic algorithm optimized backpropagation neural network(GA-BP). A GA-BP feedforward fuzzy self-tuning PID compound control system was established, and the hysteresis nonlinear compensation experiments of the actuators were carried out. Results show that the maximum output displacement of the actuators is as 558.3 μm when two piezoelectric stacks are working simultaneously, and the maximum relative error of trajectory tracking is as 0.0573 μm under sinusoidal signals. The implementation of the improved control strategy effectively enhances the performance of the systems, resulting in a trajectory tracking control accuracy of up to 97%, a reduction of the delay time to less than 2 ms, and the ability to realize the control response within 60 ms. This strategy accelerates the systems response speed, and reduces the steady-state errors to less than 0.09%, demonstrating the capability for rapid responses and minimal steady-state errors.

Key words: piezoelectric actuator, large displacement, hysteresis, nonlinear model, control system

中图分类号: