中国机械工程 ›› 2025, Vol. 36 ›› Issue (02): 294-304.DOI: 10.3969/j.issn.1004-132X.2025.02.012

• 智能制造 • 上一篇    下一篇

基于多策略融合蜣螂优化算法的工业机器人运动学参数辨识方法

许佳璐1;刘笑楠1*;李朋超2;刘振宇1   

  1. 1.沈阳工业大学信息科学与工程学院,沈阳,110870
    2.中国科学院沈阳自动化研究所机器人学国家重点实验室,沈阳,110016

  • 出版日期:2025-02-25 发布日期:2025-04-02
  • 作者简介:许佳璐,男,1999年生,硕士研究生。研究方向为工业机器人运动控制。
  • 基金资助:
    国家重点研发计划(2021YFB3201600);辽宁省自然科学基金(20180520022)

Kinematics Parameter Identification for Industrial Robots Based on Multi-strategy Fusion DBO Algorithm

XU Jialu1;LIU Xiaonan1*;LI Pengchao2;LIU Zhenyu1   

  1. 1.School of Information Science and Engineering,Shenyang University of Technology,
    Shenyang,110870
    2.State Key Laboratory of Robotics,Shenyang Institute of Automation,Chinese Academy of
    Sciences,Shenyang, 110016

  • Online:2025-02-25 Published:2025-04-02

摘要: 针对蜣螂优化(DBO)算法在工业机器人运动学参数标定过程中存在的全局探索和局部开发能力不平衡、求解精度低等问题,提出了一种基于局部指数积(LPOE)运动学模型的多策略融合蜣螂优化算法(MSFDBO)。首先建立基于LPOE模型的运动学参数辨识模型;然后采用Piecewise混沌映射和精英反向学习策略进行种群初始化,得到分布更加均匀的种群;融入鱼鹰探索行为,提高DBO算法的全局探索能力,通过随机扰动机制扩大搜索范围,减少DBO算法陷入局部最优的可能性。为测试算法性能,使用12个基准测试函数对MSFDBO算法的搜索性能进行实验评估,结果表明该算法具有良好的寻优性能。对4台T6A-19型工业机器人的运动学参数进行辨识并补偿验证,实验结果表明,绝对位置平均误差、均方根平均误差分别降低了85.47%、83.92%。

关键词: 运动学参数标定, 蜣螂优化算法, 精英反向学习, 鱼鹰探索行为, 随机扰动机制

Abstract: Aiming at the DBO algorithms imbalance between global exploration and local exploitation capabilities and low solution accuracy in the calibrating processes for kinematics parameters of industrial robots, a multi-strategy fusion(MSFDBO) algorithm was presented based on local product of exponential(LPOE) kinematics model. Firstly, a kinematics parameter identification model was established based on the LPOE model. Secondly, Piecewise chaotic mapping and elite inverse learning strategy were used for population initialization to obtain a more uniformly distributed population, incorporating the exploration behavior of the osprey to enhance the global exploration ability of the DBO algorithm, and expanding the search range through the stochastic perturbation mechanism to reduce the possibility of the DBO algorithm falling into a local optimum. To test the performance of the algorithm, the search performance of the MSFDBO algorithm was experimentally evaluated using 12 benchmark test functions. The results show that the algorithm performs well in terms of optimization. The compensation of kinematic parameters was identifed and verified for four T6A-19 industrial robots. The experimental results show that the mean absolute position errors are reduced by an average of 85.47% and the root mean square errors are reduced by an average of 83.92%.

Key words:  , kinematics parameter calibration, dung beetle optimization(DBO) algorithm, elite opposition-based learning, osprey exploratory behavior, stochastic perturbation mechanism

中图分类号: